043-temporally-and-distributionally-robust-optimization-for-cold-start-recommendation
Science Score: 23.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
○DOI references
-
✓Academic publication links
Links to: arxiv.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (10.9%) to scientific vocabulary
Scientific Fields
Artificial Intelligence and Machine Learning
Computer Science -
40% confidence
Last synced: 4 months ago
·
JSON representation
Repository
Basic Info
- Host: GitHub
- Owner: SZU-AdvTech-2024
- Default Branch: main
- Size: 0 Bytes
Statistics
- Stars: 0
- Watchers: 0
- Forks: 0
- Open Issues: 0
- Releases: 0
Created 12 months ago
· Last pushed 12 months ago
Metadata Files
Citation
https://github.com/SZU-AdvTech-2024/043-Temporally-and-Distributionally-Robust-Optimization-for-Cold-Start-Recommendation/blob/main/
# Temporally and Distributionally Robust Optimization for Cold-start Recommendation :bulb: This is the pytorch implementation of our paper > [Temporally and Distributionally Robust Optimization for Cold-start Recommendation](https://arxiv.org/pdf/2312.09901.pdf) > > Xinyu Lin, Wenjie Wang, Jujia Zhao, Yongqi Li, Fuli Feng, Tat-Seng Chua ## Environment - Anaconda 3 - python 3.7.11 - pytorch 1.10.0 - numpy 1.21.4 - kmeans_pytorch ## Usage ### Data The experimental data are in './data' folder, including Amazon, Micro-video, and Kwai. ### :red_circle: Training ``` python main.py --model_name=$1 --data_path=$2 --batch_size=$3 --l_r=$4 --reg_weight=$5 --num_group=$6 --num_period=$7 --mu=$8 --eta=$9 --lam=$10 --split_mode=$11 --log_name=$12 --gpu=$13 ``` or use run.sh ``` sh run.sh``` - The log file will be in the './code/log/' folder. - The explanation of hyper-parameters can be found in './code/main.py'. - The default hyper-parameter settings are detailed in './code/hyper-parameters.txt'. :star2: TDRO is a model-agnostic training framework and can be applied to any cold-start recommender model. You can simply create your cold-start recommender model script in './code' folder, in a similar way to "model_CLCRec.py". Alternatively, you may adopt the function ``train_TDRO`` in "Train.py" to your own code for training your cold-start recommender model via TDRO. ### :large_blue_circle: Inference Get the results of TDRO by running inference.py: ``` python inference.py --inference --data_path=$1 --ckpt=$2 --gpu=$3 ``` or use inference.sh ``` sh inference.sh dataset ``` ### :white_circle: Examples 1. Train on Amazon dataset ``` cd ./code sh run.sh TDRO amazon 1000 0.001 0.001 5 5 0.2 0.2 0.3 global log 0 ``` 2. Inference ``` cd ./code sh inference.sh amazon 0 ``` ## Citation If you find our work is useful for your research, please consider citing: ``` @inproceedings{lin2023temporally, title={Temporally and Distributionally Robust Optimization for Cold-start Recommendation}, author={Xinyu Lin, Wenjie Wang, Jujia Zhao, Yongqi Li, Fuli Feng, and Tat-Seng Chua}, booktitle={AAAI}, year={2024} } ``` ## License NUS [NExT++](https://www.nextcenter.org/)
Owner
- Name: SZU-AdvTech-2024
- Login: SZU-AdvTech-2024
- Kind: organization
- Repositories: 1
- Profile: https://github.com/SZU-AdvTech-2024
GitHub Events
Total
- Push event: 2
- Create event: 3
Last Year
- Push event: 2
- Create event: 3