235-causal-guided-active-learning-for-debiasing-large-language-models
Science Score: 31.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
○DOI references
-
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (11.1%) to scientific vocabulary
Scientific Fields
Engineering
Computer Science -
40% confidence
Last synced: 6 months ago
·
JSON representation
·
Repository
Basic Info
- Host: GitHub
- Owner: SZU-AdvTech-2024
- Default Branch: main
- Size: 1000 Bytes
Statistics
- Stars: 0
- Watchers: 0
- Forks: 0
- Open Issues: 0
- Releases: 0
Created about 1 year ago
· Last pushed about 1 year ago
Metadata Files
Citation
https://github.com/SZU-AdvTech-2024/235-Causal-Guided-Active-Learning-for-Debiasing-Large-Language-Models/blob/main/
# Causal-Guided Active Learning for Debiasing Large Language Modelsaccpted by ACL main conferenceAbove figure depicts the overview of the Causal-guided Active Learning framework. ## Dependencies - Dependencies can be installed using `requirements.txt` and python3.8. ## Quick start for CAL - Download llama2-13b-chat, vicuna-13b-v1.5 model and put them under ../../model/llama2-13b-chat and ../../model/vicuna-13b-v1.5 - After setting model as described above, we can reproduce the experimental results of MNLI datasets in the paper using the following commands. (For other LLMs and datasets, the commands are similar.) ### Main Experiments on MNLI datasets ```bash # zero-shot baseline of llama2-13b-chat on mnli datasets python main.py --model_dir ../../model --model llama2-13b-chat --dataset mnli --shot 0 --generate_len 20 # zero-shot CAL of llama2-13b-chat on mnli datasets python main.py --model_dir ../../model --model llama2-13b-chat --dataset mnli --shot 0 --generate_len 20 --debias # few-shot baseline of llama2-13b-chat on mnli datasets python main.py --model_dir ../../model --model llama2-13b-chat --dataset mnli --shot 3 --generate_len 6 --fs_num -1 # few-shot CAL of llama2-13b-chat on mnli datasets python main.py --model_dir ../../model --model llama2-13b-chat --dataset mnli --shot 3 --generate_len 6 --fs_num 10 --seed 0 # zero-shot baseline of GPT-4 on mnli datasets python main.py --model_dir ../../model --model gpt4 --dataset mnli --shot 0 --generate_len 20 # zero-shot CAL of GPT-4 on mnli datasets python main.py --model_dir ../../model --model gpt4 --dataset mnli --shot 0 --generate_len 20 --debias ``` If you want to reproduce our biased data identification and bias pattern induction process or find new bias patterns of LLMs, you can install the python package [autobiasdetector](https://pypi.org/project/autobiasdetector/) that we specifically designed for this goal. (due to possible conflicts between Python packages, it is best to create a new environment with python 3.10) The example code for using the package [autobiasdetector](https://pypi.org/project/autobiasdetector/) is located in the biasdetect folder. Please create an issue or contact me(https://zhouhaosun.github.io/) for any clarifications or suggestions.
![]()
Owner
- Name: SZU-AdvTech-2024
- Login: SZU-AdvTech-2024
- Kind: organization
- Repositories: 1
- Profile: https://github.com/SZU-AdvTech-2024
Citation (citation.txt)
@inproceedings{REPO235,
author = "Sun, Zhouhao and Du, Li and Ding, Xiao and Ma, Yixuan and Zhao, Yang and Qiu, Kaitao and Liu, Ting and Qin, Bing",
editor = "Ku, Lun-Wei and Martins, Andre and Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = "August",
pages = "14455--14469",
title = "{Causal-Guided Active Learning for Debiasing Large Language Models}",
year = "2024"
}
GitHub Events
Total
- Watch event: 2
- Push event: 4
- Create event: 3
Last Year
- Watch event: 2
- Push event: 4
- Create event: 3