susi
SuSi: Python package for unsupervised, supervised and semi-supervised self-organizing maps (SOM)
Science Score: 77.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 15 DOI reference(s) in README -
✓Academic publication links
Links to: mdpi.com, zenodo.org -
✓Committers with academic emails
1 of 3 committers (33.3%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (13.5%) to scientific vocabulary
Keywords
data-science
machine-learning
opensource
pypi-package
python
self-organizing-map
semi-supervised-learning
som
sphinx-doc
supervised-learning
unsupervised-learning
Last synced: 6 months ago
·
JSON representation
·
Repository
SuSi: Python package for unsupervised, supervised and semi-supervised self-organizing maps (SOM)
Basic Info
- Host: GitHub
- Owner: felixriese
- License: bsd-3-clause
- Language: Python
- Default Branch: main
- Homepage: https://felixriese.github.io/susi
- Size: 3.71 MB
Statistics
- Stars: 112
- Watchers: 4
- Forks: 22
- Open Issues: 0
- Releases: 22
Topics
data-science
machine-learning
opensource
pypi-package
python
self-organizing-map
semi-supervised-learning
som
sphinx-doc
supervised-learning
unsupervised-learning
Created almost 7 years ago
· Last pushed about 1 year ago
Metadata Files
Readme
Changelog
License
Code of conduct
Citation
README.rst
.. image:: https://badge.fury.io/py/susi.svg
:target: https://pypi.org/project/susi/
:alt: PyPi - Code Version
.. image:: https://img.shields.io/pypi/pyversions/susi.svg
:target: https://pypi.org/project/susi/
:alt: PyPI - Python Version
.. image:: https://readthedocs.org/projects/susi/badge/?version=latest
:target: https://susi.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. image:: https://codecov.io/gh/felixriese/susi/branch/master/graph/badge.svg
:target: https://codecov.io/gh/felixriese/susi
:alt: Codecov
.. image:: https://api.codacy.com/project/badge/Grade/d304689a7364437db1ef998cf7765f5a
:target: https://app.codacy.com/app/felixriese/susi
:alt: Codacy Badge
.. image:: https://anaconda.org/conda-forge/susi/badges/version.svg
:target: https://anaconda.org/conda-forge/susi
:alt: Conda-forge
|
.. image:: https://raw.githubusercontent.com/felixriese/susi/master/docs/_static/susi_logo_small.png
:target: https://github.com/felixriese/susi
:align: right
:alt: SuSi logo
SuSi: Supervised Self-organizing maps in Python
===============================================
Python package for unsupervised, supervised and semi-supervised self-organizing maps (SOM)
Description
-----------
We present the SuSi package for Python.
It includes a fully functional SOM for unsupervised, supervised and semi-supervised tasks:
- SOMClustering: Unsupervised SOM for clustering
- SOMRegressor: (Semi-)Supervised Regression SOM
- SOMClassifier: (Semi-)Supervised Classification SOM
:License:
`3-Clause BSD license `_
:Author:
`Felix M. Riese `_
:Citation:
see `Citation`_ and in the `bibtex `_ file
:Documentation:
`Documentation `_
:Installation:
`Installation guidelines `_
:Paper:
`F. M. Riese, S. Keller and S. Hinz in Remote Sensing, 2020 `_
Installation
------------
Pip
~~~
.. code:: bash
pip3 install susi
.. image:: https://static.pepy.tech/personalized-badge/susi?period=total&units=international_system&left_color=black&right_color=blue&left_text=Downloads
:target: https://pepy.tech/project/susi
:alt: PyPi Downloads
Conda
~~~~~
.. code:: bash
conda install -c conda-forge susi
More information can be found in the `installation guidelines `_.
.. image:: https://img.shields.io/conda/dn/conda-forge/susi.svg
:target: https://anaconda.org/conda-forge/susi
:alt: Conda-Forge Downloads
Examples
--------
A collection of code examples can be found in `the documentation `_.
Code examples as Jupyter Notebooks can be found here:
* `examples/SOMClustering `_
* `examples/SOMRegressor `_
* `examples/SOMRegressor_semisupervised `_
* `examples/SOMRegressor_multioutput `_
* `examples/SOMClassifier `_
* `examples/SOMClassifier_semisupervised `_
FAQs
-----
- **How should I set the initial hyperparameters of a SOM?** For more details
on the hyperparameters, see in `documentation/hyperparameters
`_.
- **How can I optimize the hyperparameters?** The SuSi hyperparameters
can be optimized, for example, with `scikit-learn.model_selection.GridSearchCV
`_,
since the SuSi package is developed according to several scikit-learn
guidelines.
------------
Citation
--------
The bibtex file including both references is available in `bibliography.bib
`_.
**Paper:**
F. M. Riese, S. Keller and S. Hinz, "Supervised and Semi-Supervised Self-Organizing
Maps for Regression and Classification Focusing on Hyperspectral Data",
*Remote Sensing*, vol. 12, no. 1, 2020. `DOI:10.3390/rs12010007
`_
.. code:: bibtex
@article{riese2020supervised,
author = {Riese, Felix~M. and Keller, Sina and Hinz, Stefan},
title = {{Supervised and Semi-Supervised Self-Organizing Maps for
Regression and Classification Focusing on Hyperspectral Data}},
journal = {Remote Sensing},
year = {2020},
volume = {12},
number = {1},
article-number = {7},
URL = {https://www.mdpi.com/2072-4292/12/1/7},
ISSN = {2072-4292},
DOI = {10.3390/rs12010007}
}
**Code:**
Felix M. Riese, "SuSi: SUpervised Self-organIzing maps in Python",
Zenodo, 2019. `DOI:10.5281/zenodo.2609130
`_
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.2609130.svg
:target: https://doi.org/10.5281/zenodo.2609130
.. code:: bibtex
@misc{riese2019susicode,
author = {Riese, Felix~M.},
title = {{SuSi: Supervised Self-Organizing Maps in Python}},
year = {2019},
DOI = {10.5281/zenodo.2609130},
publisher = {Zenodo},
howpublished = {\href{https://doi.org/10.5281/zenodo.2609130}{doi.org/10.5281/zenodo.2609130}}
}
-------------
License
-------
This project is published under the `3-Clause BSD `_ license.
.. image:: https://img.shields.io/pypi/l/susi.svg
:target: https://github.com/felixriese/susi/blob/main/LICENSE
:alt: PyPI - License
Owner
- Name: Dr. Felix Riese
- Login: felixriese
- Kind: user
- Location: Munich, Germany
- Company: @Peter-Park-Systems-GmbH
- Website: felixriese.de
- Repositories: 17
- Profile: https://github.com/felixriese
Ph.D. & MBA | Head of Product | Physicist with 9+ Years in Data Science and Machine Learning | First-Principles Thinking
Citation (CITATION.cff)
cff-version: 1.2.0
message: "If you use this software, please cite both the article from preferred-citation and the software itself."
authors:
- family-names: Riese
given-names: Felix M.
orcid: https://orcid.org/0000-0003-0596-9585
title: "SuSi: SUpervised Self-organIzing maps in Python"
version: 1.4.3
doi: "10.5281/zenodo.2609130"
date-released: 2021-12-11
repository-code: https://github.com/felixriese/susi
license: BSD-3-Clause
preferred-citation:
authors:
- family-names: Riese
given-names: Felix M.
- family-names: Hinz
given-names: Stefan
- family-names: Keller
given-names: Sina
title: "Supervised and Semi-Supervised Self-Organizing Maps for Regression and Classification Focusing on Hyperspectral Data"
type: article
year: 2020
doi: "10.3390/rs12010007"
journal: "Remote Sensing"
number: 7
volume: 12
issue: 1
url: https://www.mdpi.com/2072-4292/12/1/7
GitHub Events
Total
- Create event: 5
- Issues event: 2
- Release event: 1
- Watch event: 9
- Delete event: 4
- Issue comment event: 1
- Push event: 11
- Pull request event: 9
Last Year
- Create event: 5
- Issues event: 2
- Release event: 1
- Watch event: 9
- Delete event: 4
- Issue comment event: 1
- Push event: 11
- Pull request event: 9
Committers
Last synced: about 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| Felix Riese | f****e@k****u | 93 |
| Felix M. Riese | m****l@f****e | 90 |
| Felix Riese | r****e@o****m | 9 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 14
- Total pull requests: 51
- Average time to close issues: 12 days
- Average time to close pull requests: about 16 hours
- Total issue authors: 13
- Total pull request authors: 5
- Average comments per issue: 3.14
- Average comments per pull request: 0.41
- Merged pull requests: 43
- Bot issues: 0
- Bot pull requests: 2
Past Year
- Issues: 2
- Pull requests: 10
- Average time to close issues: 3 days
- Average time to close pull requests: 20 minutes
- Issue authors: 2
- Pull request authors: 2
- Average comments per issue: 0.5
- Average comments per pull request: 0.0
- Merged pull requests: 8
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- thunderbug1 (2)
- akol67 (1)
- hsynan (1)
- jalalnouri72 (1)
- aspassiani (1)
- bennydayana (1)
- nfsrules (1)
- thongjlj (1)
- bramiozo (1)
- JimmyGao0204 (1)
- travel0104 (1)
- Russjas (1)
- deepwindlee (1)
Pull Request Authors
- felixriese (46)
- dependabot[bot] (2)
- codacy-badger (1)
- Hampuztt (1)
- robinsonkwame (1)
Top Labels
Issue Labels
enhancement (1)
Pull Request Labels
dependencies (2)
python (2)
wontfix (1)
Dependencies
requirements.txt
pypi
- black >=21.9b0
- codecov >=2.1.10
- coverage >=5.3
- joblib >=0.13.0
- matplotlib >=3.3.0
- nbval >=0.9.5
- notebook >=6.0.0
- numpy >=1.18.5
- numpydoc >=1.2.1
- pandas >=1.1.5
- pytest >=6.0.1
- pytest-cov >=2.10.1
- scikit-learn >=0.21.1
- scipy >=1.3.1
- seaborn >=0.11.0
- sphinx >=4.5.0
- sphinx-autobuild >=0.7.1
- sphinx_rtd_theme >=1.0.0
- tqdm >=4.45.0
setup.py
pypi
- joblib *
- matplotlib *
- numpy *
- scikit-learn *
- scipy *
- tqdm *
.github/workflows/tests_and_linting.yml
actions
- actions/checkout v3 composite
- actions/setup-python v3 composite
- codecov/codecov-action v1 composite
.github/workflows/update_guide.yml
actions
- actions/checkout v3 composite
- jenkey2011/vuepress-deploy master composite
guide/package.json
npm
- vuepress ^1.9.7 development
dev-requirements.txt
pypi
- mypy ==1.9.0 development
- pre-commit ==3.6.2 development
docs/requirements.txt
pypi
- numpydoc ==1.6.0
- sphinx ==7.2.6
- sphinx-autobuild >=2024.2.4
- sphinx_rtd_theme ==2.0.0
pyproject.toml
pypi
test-requirements.txt
pypi
- black ==24.3.0 test
- codecov >=2.1.13 test
- coverage >=7.4.4 test
- flake8 ==7.0.0 test
- isort ==5.13.2 test
- nbval >=0.11.0 test
- pytest >=8.1.1 test
- pytest-cov >=4.1.0 test
- pytest_mock ==3.14.0 test