Science Score: 54.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (14.1%) to scientific vocabulary

Scientific Fields

Artificial Intelligence and Machine Learning Computer Science - 64% confidence
Last synced: 4 months ago · JSON representation ·

Repository

Basic Info
  • Host: GitHub
  • Owner: dibyabitmorpher
  • License: agpl-3.0
  • Language: Python
  • Default Branch: master
  • Size: 79 MB
Statistics
  • Stars: 0
  • Watchers: 1
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Created 11 months ago · Last pushed 11 months ago
Metadata Files
Readme Changelog License Citation Codeowners

README.md

Stable Diffusion web UI

A browser interface based on Gradio library for Stable Diffusion.

Features

Detailed feature showcase with images: - Original txt2img and img2img modes - One click install and run script (but you still must install python and git) - Outpainting - Inpainting - Color Sketch - Prompt Matrix - Stable Diffusion Upscale - Attention, specify parts of text that the model should pay more attention to - a man in a ((tuxedo)) - will pay more attention to tuxedo - a man in a (tuxedo:1.21) - alternative syntax - select text and press Ctrl+Up or Ctrl+Down (or Command+Up or Command+Down if you're on a MacOS) to automatically adjust attention to selected text (code contributed by anonymous user) - Loopback, run img2img processing multiple times - X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters - Textual Inversion - have as many embeddings as you want and use any names you like for them - use multiple embeddings with different numbers of vectors per token - works with half precision floating point numbers - train embeddings on 8GB (also reports of 6GB working) - Extras tab with: - GFPGAN, neural network that fixes faces - CodeFormer, face restoration tool as an alternative to GFPGAN - RealESRGAN, neural network upscaler - ESRGAN, neural network upscaler with a lot of third party models - SwinIR and Swin2SR (see here), neural network upscalers - LDSR, Latent diffusion super resolution upscaling - Resizing aspect ratio options - Sampling method selection - Adjust sampler eta values (noise multiplier) - More advanced noise setting options - Interrupt processing at any time - 4GB video card support (also reports of 2GB working) - Correct seeds for batches - Live prompt token length validation - Generation parameters - parameters you used to generate images are saved with that image - in PNG chunks for PNG, in EXIF for JPEG - can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI - can be disabled in settings - drag and drop an image/text-parameters to promptbox - Read Generation Parameters Button, loads parameters in promptbox to UI - Settings page - Running arbitrary python code from UI (must run with --allow-code to enable) - Mouseover hints for most UI elements - Possible to change defaults/mix/max/step values for UI elements via text config - Tiling support, a checkbox to create images that can be tiled like textures - Progress bar and live image generation preview - Can use a separate neural network to produce previews with almost none VRAM or compute requirement - Negative prompt, an extra text field that allows you to list what you don't want to see in generated image - Styles, a way to save part of prompt and easily apply them via dropdown later - Variations, a way to generate same image but with tiny differences - Seed resizing, a way to generate same image but at slightly different resolution - CLIP interrogator, a button that tries to guess prompt from an image - Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway - Batch Processing, process a group of files using img2img - Img2img Alternative, reverse Euler method of cross attention control - Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions - Reloading checkpoints on the fly - Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one - Custom scripts with many extensions from community - Composable-Diffusion, a way to use multiple prompts at once - separate prompts using uppercase AND - also supports weights for prompts: a cat :1.2 AND a dog AND a penguin :2.2 - No token limit for prompts (original stable diffusion lets you use up to 75 tokens) - DeepDanbooru integration, creates danbooru style tags for anime prompts - xformers, major speed increase for select cards: (add --xformers to commandline args) - via extension: History tab: view, direct and delete images conveniently within the UI - Generate forever option - Training tab - hypernetworks and embeddings options - Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime) - Clip skip - Hypernetworks - Loras (same as Hypernetworks but more pretty) - A separate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt - Can select to load a different VAE from settings screen - Estimated completion time in progress bar - API - Support for dedicated inpainting model by RunwayML - via extension: Aesthetic Gradients, a way to generate images with a specific aesthetic by using clip images embeds (implementation of https://github.com/vicgalle/stable-diffusion-aesthetic-gradients) - Stable Diffusion 2.0 support - see wiki for instructions - Alt-Diffusion support - see wiki for instructions - Now without any bad letters! - Load checkpoints in safetensors format - Eased resolution restriction: generated image's dimension must be a multiple of 8 rather than 64 - Now with a license! - Reorder elements in the UI from settings screen

Installation and Running

Make sure the required dependencies are met and follow the instructions available for: - NVidia (recommended) - AMD GPUs. - Intel CPUs, Intel GPUs (both integrated and discrete) (external wiki page)

Alternatively, use online services (like Google Colab):

Installation on Windows 10/11 with NVidia-GPUs using release package

  1. Download sd.webui.zip from v1.0.0-pre and extract it's contents.
  2. Run update.bat.
  3. Run run.bat. > For more details see Install-and-Run-on-NVidia-GPUs

Automatic Installation on Windows

  1. Install Python 3.10.6 (Newer version of Python does not support torch), checking "Add Python to PATH".
  2. Install git.
  3. Download the stable-diffusion-webui repository, for example by running git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git.
  4. Run webui-user.bat from Windows Explorer as normal, non-administrator, user.

Automatic Installation on Linux

  1. Install the dependencies: bash # Debian-based: sudo apt install wget git python3 python3-venv libgl1 libglib2.0-0 # Red Hat-based: sudo dnf install wget git python3 # Arch-based: sudo pacman -S wget git python3
  2. Navigate to the directory you would like the webui to be installed and execute the following command: bash wget -q https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh
  3. Run webui.sh.
  4. Check webui-user.sh for options. ### Installation on Apple Silicon

Find the instructions here.

Contributing

Here's how to add code to this repo: Contributing

Documentation

The documentation was moved from this README over to the project's wiki.

For the purposes of getting Google and other search engines to crawl the wiki, here's a link to the (not for humans) crawlable wiki.

Credits

Licenses for borrowed code can be found in Settings -> Licenses screen, and also in html/licenses.html file.

  • Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
  • k-diffusion - https://github.com/crowsonkb/k-diffusion.git
  • GFPGAN - https://github.com/TencentARC/GFPGAN.git
  • CodeFormer - https://github.com/sczhou/CodeFormer
  • ESRGAN - https://github.com/xinntao/ESRGAN
  • SwinIR - https://github.com/JingyunLiang/SwinIR
  • Swin2SR - https://github.com/mv-lab/swin2sr
  • LDSR - https://github.com/Hafiidz/latent-diffusion
  • MiDaS - https://github.com/isl-org/MiDaS
  • Ideas for optimizations - https://github.com/basujindal/stable-diffusion
  • Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
  • Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
  • Sub-quadratic Cross Attention layer optimization - Alex Birch (https://github.com/Birch-san/diffusers/pull/1), Amin Rezaei (https://github.com/AminRezaei0x443/memory-efficient-attention)
  • Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
  • Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
  • Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
  • CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
  • Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
  • xformers - https://github.com/facebookresearch/xformers
  • DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
  • Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6)
  • Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix
  • Security advice - RyotaK
  • UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC
  • TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd
  • LyCORIS - KohakuBlueleaf
  • Restart sampling - lambertae - https://github.com/Newbeeer/diffusionrestartsampling
  • Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
  • (You)

Owner

  • Login: dibyabitmorpher
  • Kind: user

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
  - given-names: AUTOMATIC1111
title: "Stable Diffusion Web UI"
date-released: 2022-08-22
url: "https://github.com/AUTOMATIC1111/stable-diffusion-webui"

GitHub Events

Total
  • Push event: 1
  • Create event: 2
Last Year
  • Push event: 1
  • Create event: 2

Dependencies

.github/workflows/on_pull_request.yaml actions
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
  • actions/setup-python v4 composite
.github/workflows/run_tests.yaml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
  • actions/upload-artifact v3 composite
.github/workflows/warns_merge_master.yml actions
package.json npm
  • eslint ^8.40.0 development
extensions/Text2Video-Zero-sd-webui/environment.yaml pypi
  • Pillow ==9.4.0
  • accelerate ==0.16.0
  • addict ==2.4.0
  • albumentations ==1.3.0
  • basicsr ==1.4.2
  • decord ==0.6.0
  • diffusers ==0.14.0
  • einops ==0.6.0
  • gradio ==3.22.1
  • imageio ==2.9.0
  • imageio-ffmpeg ==0.4.2
  • invisible-watermark >=0.1.5
  • kornia ==0.6
  • moviepy ==1.0.3
  • numpy ==1.24.1
  • omegaconf ==2.3.0
  • open_clip_torch ==2.16.0
  • opencv-contrib-python ==4.3.0.36
  • opencv_python ==4.7.0.68
  • prettytable ==3.6.0
  • pytorch-lightning ==1.5.0
  • safetensors ==0.2.7
  • scikit_image ==0.19.3
  • scipy ==1.10.1
  • streamlit ==1.12.1
  • streamlit-drawable-canvas ==0.8.0
  • tensorboardX ==2.6
  • test-tube >=0.7.5
  • timm ==0.6.12
  • torchmetrics ==0.6.0
  • tqdm ==4.64.1
  • transformers ==4.26.0
  • webdataset ==0.2.5
  • yapf ==0.32.0
extensions/Text2Video-Zero-sd-webui/requirements.txt pypi
  • beautifulsoup4 *
  • bs4 *
  • decord ==0.6.0
  • diffusers ==0.14.0
  • moviepy ==1.0.3
  • open_clip_torch ==2.16.0
  • opencv-contrib-python ==4.7.0.72
  • opencv_python ==4.7.0.72
  • prettytable ==3.6.0
  • scikit_image ==0.19.3
extensions/arifScratchRemoverWebUIExtention/requirements.txt pypi
  • controlnet_aux *
  • easydict *
  • ftfy *
  • glob2 *
  • scipy *
  • xformers *
extensions/sd-face-fusion-extension/requirements.txt pypi
  • insightface >=0.7.3
  • onnx >=1.14.1
  • onnxruntime-gpu >=1.16.0
  • opencv-python ==4.8.0.74
  • opennsfw2 >=0.10.2
  • tensorflow >=2.13.0
  • tensorflow *
pyproject.toml pypi
requirements-test.txt pypi
  • pytest * test
  • pytest-base-url * test
  • pytest-cov * test
requirements.txt pypi
  • GitPython *
  • Pillow *
  • accelerate *
  • basicsr *
  • blendmodes *
  • clean-fid *
  • einops *
  • fastapi >=0.90.1
  • gfpgan *
  • gradio ==3.41.2
  • inflection *
  • jsonmerge *
  • kornia *
  • lark *
  • numpy *
  • omegaconf *
  • open-clip-torch *
  • piexif *
  • psutil *
  • pytorch_lightning *
  • realesrgan *
  • requests *
  • resize-right *
  • safetensors *
  • scikit-image >=0.19
  • timm *
  • tomesd *
  • torch *
  • torchdiffeq *
  • torchsde *
  • transformers ==4.30.2
requirements_versions.txt pypi
  • GitPython ==3.1.32
  • Pillow ==9.5.0
  • Pillow *
  • accelerate ==0.21.0
  • basicsr ==1.4.2
  • beautifulsoup4 *
  • blendmodes ==2022
  • bs4 *
  • clean-fid ==0.1.35
  • controlnet-aux ==0.0.6
  • decord ==0.6.0
  • diffusers ==0.14.0
  • easydict ==1.11
  • einops ==0.4.1
  • fastai ==1.0.60
  • fastapi ==0.94.0
  • ffmpeg *
  • ffmpeg-python *
  • ftfy ==6.1.3
  • gfpgan ==1.3.8
  • glob2 ==0.5
  • gradio ==3.41.2
  • httpcore ==0.15
  • httpx ==0.24.1
  • inflection ==0.5.1
  • insightface >=0.7.3
  • jsonmerge ==1.8.0
  • kornia ==0.6.7
  • lark ==1.1.2
  • moviepy ==1.0.3
  • numpy ==1.23.5
  • omegaconf ==2.2.3
  • onnx >=1.14.1
  • onnxruntime-gpu >=1.16.0
  • open_clip_torch ==2.16.0
  • opencv-contrib-python ==4.7.0.72
  • opencv_python ==4.7.0.72
  • opennsfw2 >=0.10.2
  • piexif ==1.1.3
  • prettytable ==3.6.0
  • psutil ==5.9.5
  • pytorch_lightning ==1.9.4
  • realesrgan ==0.3.0
  • resize-right ==0.0.2
  • safetensors ==0.3.1
  • scikit_image ==0.19.3
  • scipy ==1.11.4
  • tensorboardX *
  • tensorflow >=2.13.0
  • tensorflow *
  • timm ==0.9.2
  • tomesd ==0.1.3
  • torch *
  • torchdiffeq ==0.2.3
  • torchsde ==0.2.6
  • transformers ==4.30.2
  • wandb *
  • yt-dlp *