mmpose

OpenMMLab Pose Estimation Toolbox and Benchmark.

https://github.com/open-mmlab/mmpose

Science Score: 54.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
    7 of 115 committers (6.1%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (9.0%) to scientific vocabulary

Keywords

animal-pose-estimation benchmark cpm crowdpose face-keypoint freihand hand-pose-estimation higher-hrnet hourglass hrnet human-pose mmpose mpii mspn ochuman pose-estimation pytorch rsn rtmpose udp

Keywords from Contributors

onnx swin-transformer openvino mmdetection deployment mmsegmentation model-converter ncnn onnxruntime pplnn
Last synced: 6 months ago · JSON representation ·

Repository

OpenMMLab Pose Estimation Toolbox and Benchmark.

Basic Info
Statistics
  • Stars: 6,817
  • Watchers: 58
  • Forks: 1,380
  • Open Issues: 311
  • Releases: 35
Topics
animal-pose-estimation benchmark cpm crowdpose face-keypoint freihand hand-pose-estimation higher-hrnet hourglass hrnet human-pose mmpose mpii mspn ochuman pose-estimation pytorch rsn rtmpose udp
Created over 5 years ago · Last pushed 7 months ago
Metadata Files
Readme License Code of conduct Citation

README.md

 
OpenMMLab website HOT      OpenMMLab platform TRY IT OUT
 
[![Documentation](https://readthedocs.org/projects/mmpose/badge/?version=latest)](https://mmpose.readthedocs.io/en/latest/?badge=latest) [![actions](https://github.com/open-mmlab/mmpose/workflows/merge_stage_test/badge.svg)](https://github.com/open-mmlab/mmpose/actions) [![codecov](https://codecov.io/gh/open-mmlab/mmpose/branch/latest/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmpose) [![PyPI](https://img.shields.io/pypi/v/mmpose)](https://pypi.org/project/mmpose/) [![LICENSE](https://img.shields.io/github/license/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/blob/main/LICENSE) [![Average time to resolve an issue](https://isitmaintained.com/badge/resolution/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/issues) [![Percentage of issues still open](https://isitmaintained.com/badge/open/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/issues) [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/app-center/openxlab_demo.svg)](https://openxlab.org.cn/apps?search=mmpose) [📘Documentation](https://mmpose.readthedocs.io/en/latest/) | [🛠️Installation](https://mmpose.readthedocs.io/en/latest/installation.html) | [👀Model Zoo](https://mmpose.readthedocs.io/en/latest/model_zoo.html) | [📜Papers](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html) | [🆕Update News](https://mmpose.readthedocs.io/en/latest/notes/changelog.html) | [🤔Reporting Issues](https://github.com/open-mmlab/mmpose/issues/new/choose) | [🔥RTMPose](/projects/rtmpose/)

Introduction

English | 简体中文

MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project.

The main branch works with PyTorch 1.8+.

https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-84f6-24eeddbf4d91.mp4


Major Features - **Support diverse tasks** We support a wide spectrum of mainstream pose analysis tasks in current research community, including 2d multi-person human pose estimation, 2d hand pose estimation, 2d face landmark detection, 133 keypoint whole-body human pose estimation, 3d human mesh recovery, fashion landmark detection and animal pose estimation. See [Demo](demo/docs/en) for more information. - **Higher efficiency and higher accuracy** MMPose implements multiple state-of-the-art (SOTA) deep learning models, including both top-down & bottom-up approaches. We achieve faster training speed and higher accuracy than other popular codebases, such as [HRNet](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch). See [benchmark.md](docs/en/notes/benchmark.md) for more information. - **Support for various datasets** The toolbox directly supports multiple popular and representative datasets, COCO, AIC, MPII, MPII-TRB, OCHuman etc. See [dataset_zoo](docs/en/dataset_zoo) for more information. - **Well designed, tested and documented** We decompose MMPose into different components and one can easily construct a customized pose estimation framework by combining different modules. We provide detailed documentation and API reference, as well as unittests.

What's New

  • Release RTMW3D, a real-time model for 3D wholebody pose estimation.

  • Release RTMO, a state-of-the-art real-time method for multi-person pose estimation.

rtmo

  • Release RTMW models in various sizes ranging from RTMW-m to RTMW-x. The input sizes include 256x192 and 384x288. This provides flexibility to select the right model for different speed and accuracy requirements.

  • Support inference of PoseAnything. Web demo is available here.

  • Support for new datasets:

  • Welcome to use the MMPose project. Here, you can discover the latest features and algorithms in MMPose and quickly share your ideas and code implementations with the community. Adding new features to MMPose has become smoother:

    • Provides a simple and fast way to add new algorithms, features, and applications to MMPose.
    • More flexible code structure and style, fewer restrictions, and a shorter code review process.
    • Utilize the powerful capabilities of MMPose in the form of independent projects without being constrained by the code framework.
    • Newly added projects include:
    • RTMPose
    • RTMO
    • RTMPose3D
    • PoseAnything
    • YOLOX-Pose
    • MMPose4AIGC
    • Simple Keypoints
    • Just Dance
    • Uniformer
    • Start your journey as an MMPose contributor with a simple example project, and let's build a better MMPose together!


  • January 4, 2024: MMPose v1.3.0 has been officially released, with major updates including:

    • Support for new datasets: ExLPose, H3WB
    • Release of new RTMPose series models: RTMO, RTMW
    • Support for new algorithm PoseAnything
    • Enhanced Inferencer with optional progress bar and improved affinity for one-stage methods

Please check the complete release notes for more details on the updates brought by MMPose v1.3.0!

0.x / 1.x Migration

MMPose v1.0.0 is a major update, including many API and config file changes. Currently, a part of the algorithms have been migrated to v1.0.0, and the remaining algorithms will be completed in subsequent versions. We will show the migration progress in this Roadmap.

If your algorithm has not been migrated, you can continue to use the 0.x branch and old documentation.

Installation

Please refer to installation.md for more detailed installation and dataset preparation.

Getting Started

We provided a series of tutorials about the basic usage of MMPose for new users:

  1. For the basic usage of MMPose:
  1. For developers who wish to develop based on MMPose:
  1. For researchers and developers who are willing to contribute to MMPose:
  1. For some common issues, we provide a FAQ list:

Model Zoo

Results and models are available in the README.md of each method's config directory. A summary can be found in the Model Zoo page.

Supported algorithms: - [x] [DeepPose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#deeppose-cvpr-2014) (CVPR'2014) - [x] [CPM](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#cpm-cvpr-2016) (CVPR'2016) - [x] [Hourglass](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#hourglass-eccv-2016) (ECCV'2016) - [x] [SimpleBaseline3D](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#simplebaseline3d-iccv-2017) (ICCV'2017) - [ ] [Associative Embedding](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#associative-embedding-nips-2017) (NeurIPS'2017) - [x] [SimpleBaseline2D](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#simplebaseline2d-eccv-2018) (ECCV'2018) - [x] [DSNT](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#dsnt-2018) (ArXiv'2021) - [x] [HRNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#hrnet-cvpr-2019) (CVPR'2019) - [x] [IPR](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#ipr-eccv-2018) (ECCV'2018) - [x] [VideoPose3D](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#videopose3d-cvpr-2019) (CVPR'2019) - [x] [HRNetv2](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#hrnetv2-tpami-2019) (TPAMI'2019) - [x] [MSPN](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#mspn-arxiv-2019) (ArXiv'2019) - [x] [SCNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#scnet-cvpr-2020) (CVPR'2020) - [ ] [HigherHRNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#higherhrnet-cvpr-2020) (CVPR'2020) - [x] [RSN](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#rsn-eccv-2020) (ECCV'2020) - [x] [InterNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#internet-eccv-2020) (ECCV'2020) - [ ] [VoxelPose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#voxelpose-eccv-2020) (ECCV'2020) - [x] [LiteHRNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#litehrnet-cvpr-2021) (CVPR'2021) - [x] [ViPNAS](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#vipnas-cvpr-2021) (CVPR'2021) - [x] [Debias-IPR](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#debias-ipr-iccv-2021) (ICCV'2021) - [x] [SimCC](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#simcc-eccv-2022) (ECCV'2022)
Supported techniques: - [x] [FPN](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#fpn-cvpr-2017) (CVPR'2017) - [x] [FP16](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#fp16-arxiv-2017) (ArXiv'2017) - [x] [Wingloss](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#wingloss-cvpr-2018) (CVPR'2018) - [x] [AdaptiveWingloss](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#adaptivewingloss-iccv-2019) (ICCV'2019) - [x] [DarkPose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#darkpose-cvpr-2020) (CVPR'2020) - [x] [UDP](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#udp-cvpr-2020) (CVPR'2020) - [x] [Albumentations](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#albumentations-information-2020) (Information'2020) - [x] [SoftWingloss](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#softwingloss-tip-2021) (TIP'2021) - [x] [RLE](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#rle-iccv-2021) (ICCV'2021)
Supported datasets: - [x] [AFLW](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#aflw-iccvw-2011) \[[homepage](https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/)\] (ICCVW'2011) - [x] [sub-JHMDB](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#jhmdb-iccv-2013) \[[homepage](http://jhmdb.is.tue.mpg.de/dataset)\] (ICCV'2013) - [x] [COFW](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#cofw-iccv-2013) \[[homepage](http://www.vision.caltech.edu/xpburgos/ICCV13/)\] (ICCV'2013) - [x] [MPII](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#mpii-cvpr-2014) \[[homepage](http://human-pose.mpi-inf.mpg.de/)\] (CVPR'2014) - [x] [Human3.6M](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#human3-6m-tpami-2014) \[[homepage](http://vision.imar.ro/human3.6m/description.php)\] (TPAMI'2014) - [x] [COCO](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#coco-eccv-2014) \[[homepage](http://cocodataset.org/)\] (ECCV'2014) - [x] [CMU Panoptic](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#cmu-panoptic-iccv-2015) \[[homepage](http://domedb.perception.cs.cmu.edu/)\] (ICCV'2015) - [x] [300VW](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#300w-imavis-2016) \[[homepage](https://ibug.doc.ic.ac.uk/resources/300-VW/)\] (ICCV'2015) - [x] [DeepFashion](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#deepfashion-cvpr-2016) \[[homepage](http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/LandmarkDetection.html)\] (CVPR'2016) - [x] [300W](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#300w-imavis-2016) \[[homepage](https://ibug.doc.ic.ac.uk/resources/300-W/)\] (IMAVIS'2016) - [x] [RHD](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#rhd-iccv-2017) \[[homepage](https://lmb.informatik.uni-freiburg.de/resources/datasets/RenderedHandposeDataset.en.html)\] (ICCV'2017) - [x] [CMU Panoptic HandDB](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#cmu-panoptic-handdb-cvpr-2017) \[[homepage](http://domedb.perception.cs.cmu.edu/handdb.html)\] (CVPR'2017) - [x] [AI Challenger](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#ai-challenger-arxiv-2017) \[[homepage](https://github.com/AIChallenger/AI_Challenger_2017)\] (ArXiv'2017) - [x] [MHP](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#mhp-acm-mm-2018) \[[homepage](https://lv-mhp.github.io/dataset)\] (ACM MM'2018) - [x] [WFLW](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#wflw-cvpr-2018) \[[homepage](https://wywu.github.io/projects/LAB/WFLW.html)\] (CVPR'2018) - [x] [PoseTrack18](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#posetrack18-cvpr-2018) \[[homepage](https://posetrack.net/users/download.php)\] (CVPR'2018) - [x] [OCHuman](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#ochuman-cvpr-2019) \[[homepage](https://github.com/liruilong940607/OCHumanApi)\] (CVPR'2019) - [x] [CrowdPose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#crowdpose-cvpr-2019) \[[homepage](https://github.com/Jeff-sjtu/CrowdPose)\] (CVPR'2019) - [x] [MPII-TRB](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#mpii-trb-iccv-2019) \[[homepage](https://github.com/kennymckormick/Triplet-Representation-of-human-Body)\] (ICCV'2019) - [x] [FreiHand](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#freihand-iccv-2019) \[[homepage](https://lmb.informatik.uni-freiburg.de/projects/freihand/)\] (ICCV'2019) - [x] [Animal-Pose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#animal-pose-iccv-2019) \[[homepage](https://sites.google.com/view/animal-pose/)\] (ICCV'2019) - [x] [OneHand10K](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#onehand10k-tcsvt-2019) \[[homepage](https://www.yangangwang.com/papers/WANG-MCC-2018-10.html)\] (TCSVT'2019) - [x] [Vinegar Fly](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#vinegar-fly-nature-methods-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Nature Methods'2019) - [x] [Desert Locust](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#desert-locust-elife-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Elife'2019) - [x] [Grévy’s Zebra](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#grevys-zebra-elife-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Elife'2019) - [x] [ATRW](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#atrw-acm-mm-2020) \[[homepage](https://cvwc2019.github.io/challenge.html)\] (ACM MM'2020) - [x] [Halpe](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#halpe-cvpr-2020) \[[homepage](https://github.com/Fang-Haoshu/Halpe-FullBody/)\] (CVPR'2020) - [x] [COCO-WholeBody](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#coco-wholebody-eccv-2020) \[[homepage](https://github.com/jin-s13/COCO-WholeBody/)\] (ECCV'2020) - [x] [MacaquePose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#macaquepose-biorxiv-2020) \[[homepage](http://www.pri.kyoto-u.ac.jp/datasets/macaquepose/index.html)\] (bioRxiv'2020) - [x] [InterHand2.6M](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#interhand2-6m-eccv-2020) \[[homepage](https://mks0601.github.io/InterHand2.6M/)\] (ECCV'2020) - [x] [AP-10K](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#ap-10k-neurips-2021) \[[homepage](https://github.com/AlexTheBad/AP-10K)\] (NeurIPS'2021) - [x] [Horse-10](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#horse-10-wacv-2021) \[[homepage](http://www.mackenziemathislab.org/horse10)\] (WACV'2021) - [x] [Human-Art](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#human-art-cvpr-2023) \[[homepage](https://idea-research.github.io/HumanArt/)\] (CVPR'2023) - [x] [LaPa](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#lapa-aaai-2020) \[[homepage](https://github.com/JDAI-CV/lapa-dataset)\] (AAAI'2020) - [x] [UBody](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#ubody-cvpr-2023) \[[homepage](https://github.com/IDEA-Research/OSX)\] (CVPR'2023)
Supported backbones: - [x] [AlexNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#alexnet-neurips-2012) (NeurIPS'2012) - [x] [VGG](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#vgg-iclr-2015) (ICLR'2015) - [x] [ResNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#resnet-cvpr-2016) (CVPR'2016) - [x] [ResNext](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#resnext-cvpr-2017) (CVPR'2017) - [x] [SEResNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#seresnet-cvpr-2018) (CVPR'2018) - [x] [ShufflenetV1](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#shufflenetv1-cvpr-2018) (CVPR'2018) - [x] [ShufflenetV2](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#shufflenetv2-eccv-2018) (ECCV'2018) - [x] [MobilenetV2](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#mobilenetv2-cvpr-2018) (CVPR'2018) - [x] [ResNetV1D](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#resnetv1d-cvpr-2019) (CVPR'2019) - [x] [ResNeSt](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#resnest-arxiv-2020) (ArXiv'2020) - [x] [Swin](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#swin-cvpr-2021) (CVPR'2021) - [x] [HRFormer](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#hrformer-nips-2021) (NIPS'2021) - [x] [PVT](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#pvt-iccv-2021) (ICCV'2021) - [x] [PVTV2](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#pvtv2-cvmj-2022) (CVMJ'2022)

Model Request

We will keep up with the latest progress of the community, and support more popular algorithms and frameworks. If you have any feature requests, please feel free to leave a comment in MMPose Roadmap.

Contributing

We appreciate all contributions to improve MMPose. Please refer to CONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMPose is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new models.

Citation

If you find this project useful in your research, please consider cite:

bibtex @misc{mmpose2020, title={OpenMMLab Pose Estimation Toolbox and Benchmark}, author={MMPose Contributors}, howpublished = {\url{https://github.com/open-mmlab/mmpose}}, year={2020} }

License

This project is released under the Apache 2.0 license.

Projects in OpenMMLab

  • MMEngine: OpenMMLab foundational library for training deep learning models.
  • MMCV: OpenMMLab foundational library for computer vision.
  • MMPreTrain: OpenMMLab pre-training toolbox and benchmark.
  • MMagic: OpenMMLab Advanced, Generative and Intelligent Creation toolbox.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
  • MMRotate: OpenMMLab rotated object detection toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMOCR: OpenMMLab text detection, recognition, and understanding toolbox.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
  • MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
  • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
  • MMFlow: OpenMMLab optical flow toolbox and benchmark.
  • MMDeploy: OpenMMLab Model Deployment Framework.
  • MMRazor: OpenMMLab model compression toolbox and benchmark.
  • MIM: MIM installs OpenMMLab packages.
  • Playground: A central hub for gathering and showcasing amazing projects built upon OpenMMLab.

Owner

  • Name: OpenMMLab
  • Login: open-mmlab
  • Kind: organization
  • Location: China

Citation (CITATION.cff)

cff-version: 1.3.1
message: "If you use this software, please cite it as below."
authors:
  - name: "MMPose Contributors"
title: "OpenMMLab Pose Estimation Toolbox and Benchmark"
date-released: 2020-08-31
url: "https://github.com/open-mmlab/mmpose"
license: Apache-2.0

GitHub Events

Total
  • Issues event: 59
  • Watch event: 981
  • Issue comment event: 92
  • Push event: 3
  • Pull request review event: 1
  • Pull request event: 17
  • Fork event: 184
Last Year
  • Issues event: 59
  • Watch event: 981
  • Issue comment event: 92
  • Push event: 3
  • Pull request review event: 1
  • Pull request event: 17
  • Fork event: 184

Committers

Last synced: 9 months ago

All Time
  • Total Commits: 1,113
  • Total Committers: 115
  • Avg Commits per committer: 9.678
  • Development Distribution Score (DDS): 0.776
Past Year
  • Commits: 8
  • Committers: 2
  • Avg Commits per committer: 4.0
  • Development Distribution Score (DDS): 0.25
Top Committers
Name Email Commits
Yining Li l****2@g****m 249
Jas j****g@s****m 234
Peng Lu p****7@g****m 99
Tau t****g@o****m 94
lizz i****e 89
Qikai Li 8****9 59
Ycr 3****i 24
zengwang430521 z****1@g****m 23
xiexinch x****h@o****m 20
wusize 7****e 19
liuxin9608 6****8 16
cherryjm 4****m 16
Yifan Lareina WU m****a@g****m 14
Xin Li 7****7 8
wangcan w****n@s****m 8
Lumin 3****u 8
LinXiaoZheng 9****o 3
Motoki Kimura m****0@g****m 3
Tommy in Tongji 3****o 3
jeonhobeom 3****m 3
RangiLyu l****i@g****m 3
Joanna 3****Y 3
lupeng.vendor l****g@p****n 3
liyining l****g@s****m 3
ChenXF c****3@1****m 2
blkcat b****e@1****m 2
Chao Wen w****d@g****m 2
xinxinxinxu 5****u 2
vansin m****e@1****m 2
jibranbinsaleem 4****m 2
and 85 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 495
  • Total pull requests: 336
  • Average time to close issues: about 1 month
  • Average time to close pull requests: 7 days
  • Total issue authors: 361
  • Total pull request authors: 83
  • Average comments per issue: 2.74
  • Average comments per pull request: 1.25
  • Merged pull requests: 256
  • Bot issues: 0
  • Bot pull requests: 1
Past Year
  • Issues: 73
  • Pull requests: 20
  • Average time to close issues: about 15 hours
  • Average time to close pull requests: about 1 month
  • Issue authors: 70
  • Pull request authors: 13
  • Average comments per issue: 0.37
  • Average comments per pull request: 0.9
  • Merged pull requests: 1
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • caochengchen (11)
  • kdavidlp123 (9)
  • alaa-shubbak (8)
  • ChenZhenGui (6)
  • hsp2454 (5)
  • seon-creator (5)
  • 690696306 (4)
  • vicnoah (4)
  • LjIA26 (4)
  • liming-ai (4)
  • sidh1603 (4)
  • grpinto (4)
  • felipe-parodi (3)
  • lelexx (3)
  • gaominqi (3)
Pull Request Authors
  • Ben-Louis (79)
  • Tau-J (53)
  • ly015 (33)
  • LareinaM (23)
  • jin-s13 (10)
  • xiexinch (10)
  • liqikai9 (9)
  • drazicmartin (6)
  • luminxu (5)
  • KeqiangSun (4)
  • raphael410 (4)
  • shuheilocale (3)
  • kingyaaa (3)
  • xin-li-67 (3)
  • QwQ2000 (3)
Top Labels
Issue Labels
question (12) enhancement (5) info/1.x (4) community/help wanted (3) waiting for more info (2) Jetson (1) speed (1) benchmark (1) info/visualization (1) upstream (1) freeze (1) deployment (1) info/dataset (1) kind/doc (1) FAQ (1) faq candidate (1)
Pull Request Labels
status/blocked (1)

Packages

  • Total packages: 2
  • Total downloads:
    • pypi 48,815 last-month
  • Total docker downloads: 1,534
  • Total dependent packages: 10
    (may contain duplicates)
  • Total dependent repositories: 67
    (may contain duplicates)
  • Total versions: 65
  • Total maintainers: 1
pypi.org: mmpose

OpenMMLab Pose Estimation Toolbox and Benchmark.

  • Versions: 34
  • Dependent Packages: 10
  • Dependent Repositories: 67
  • Downloads: 48,815 Last month
  • Docker Downloads: 1,534
Rankings
Stargazers count: 1.1%
Forks count: 1.3%
Dependent repos count: 1.8%
Average: 2.1%
Downloads: 2.5%
Docker downloads count: 3.0%
Dependent packages count: 3.2%
Maintainers (1)
Last synced: 6 months ago
proxy.golang.org: github.com/open-mmlab/mmpose
  • Versions: 31
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 6.5%
Average: 6.7%
Dependent repos count: 7.0%
Last synced: 6 months ago

Dependencies

.github/workflows/deploy.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
.github/workflows/lint.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
docker/Dockerfile docker
  • pytorch/pytorch ${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel build
docker/serve/Dockerfile docker
  • pytorch/pytorch ${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel build
requirements/albu.txt pypi
  • albumentations >=0.3.2
requirements/build.txt pypi
  • numpy *
  • torch >=1.3
requirements/docs.txt pypi
  • docutils ==0.16.0
  • markdown *
  • myst-parser *
  • sphinx ==4.0.2
  • sphinx_copybutton *
  • sphinx_markdown_tables *
requirements/mminstall.txt pypi
  • mmcv-full >=1.3.8
  • mmdet >=2.14.0
  • mmtrack >=0.6.0
requirements/optional.txt pypi
  • onnx *
  • onnxruntime *
  • pyrender *
  • requests *
  • smplx >=0.1.28
  • trimesh *
requirements/readthedocs.txt pypi
  • mmcv-full *
  • munkres *
  • regex *
  • scipy *
  • titlecase *
  • torch *
  • torchvision *
  • xtcocotools >=1.8
requirements/runtime.txt pypi
  • chumpy *
  • dataclasses *
  • json_tricks *
  • matplotlib *
  • munkres *
  • numpy *
  • opencv-python *
  • pillow *
  • scipy *
  • torchvision *
  • xtcocotools >=1.12
requirements/tests.txt pypi
  • coverage * test
  • flake8 * test
  • interrogate * test
  • isort ==4.3.21 test
  • pytest * test
  • pytest-runner * test
  • smplx >=0.1.28 test
  • xdoctest >=0.10.0 test
  • yapf * test
.github/workflows/merge_stage_test.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
  • codecov/codecov-action v1.0.14 composite
.github/workflows/pr_stage_test.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
  • codecov/codecov-action v1.0.14 composite
.circleci/docker/Dockerfile docker
  • pytorch/pytorch ${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel build
projects/rtmpose/examples/onnxruntime/requirements.txt pypi
  • loguru ==0.6.0
  • numpy ==1.21.6
  • onnxruntime ==1.14.1
  • onnxruntime-gpu ==1.8.1
requirements/poseval.txt pypi
  • shapely ==1.8.4
requirements.txt pypi
setup.py pypi