bnlearn
Python package for Causal Discovery by learning the graphical structure of Bayesian networks. Structure Learning, Parameter Learning, Inferences, Sampling methods.
Science Score: 36.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
✓Academic publication links
Links to: zenodo.org -
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.6%) to scientific vocabulary
Keywords
Repository
Python package for Causal Discovery by learning the graphical structure of Bayesian networks. Structure Learning, Parameter Learning, Inferences, Sampling methods.
Basic Info
- Host: GitHub
- Owner: erdogant
- License: other
- Language: Jupyter Notebook
- Default Branch: master
- Homepage: https://erdogant.github.io/bnlearn
- Size: 41.7 MB
Statistics
- Stars: 531
- Watchers: 7
- Forks: 51
- Open Issues: 11
- Releases: 85
Topics
Metadata Files
README.md
``bnlearn`` is Python package for causal discovery by learning the graphical structure of Bayesian networks, parameter learning, inference, and sampling methods.
Because probabilistic graphical models can be difficult to use, ``Bnlearn`` contains the most-wanted pipelines. Navigate to [API documentations](https://erdogant.github.io/bnlearn/) for more detailed information. ** Star it if you like it **
Star history
Key Pipelines
| Feature | Description | |--------|-------------| | Causal Discovery / Structure Learning | Learn the model structure from data or with expert knowledge. | | Parameter Learning | Estimate model parameters (e.g., conditional probability distributions) from observed data. | | Causal Inference | Compute interventional and counterfactual distributions using do-calculus. | | Generate Synthetic Data | Generate synthetic data. | | Discretize Data | Discretize continuous datasets. |
Resources and Links
- Example Notebooks: Examples
- Blog Posts: Medium
- Documentation: Website
- Bug Reports and Feature Requests: GitHub Issues
The following functions are available after installation:
| Feature | Description |
|--------|-------------|
| Key Pipelines | |
| Structure learning | bn.structure_learning.fit() |
| Parameter learning | bn.parameter_learning.fit() |
| Inference | bn.inference.fit() |
| Make predictions | bn.predict() |
| Generate Synthetic Data | bn.sampling() |
| Compute Edge Strength | bn.independence_test() |
| Key Functions | |
| Imputations | bn.knn_imputer() |
| Discretizing | bn.discretize() |
| Check Model Parameters | bn.check_model() |
| Create DAG | bn.make_DAG() |
| Get Node Properties | bn.get_node_properties() |
| Get Edge Properties | bn.get_edge_properties() |
| Get Parents From Edges | bn.get_parents() |
| Generate Default CPT per Node | bn.generate_cpt() |
| Generate Default CPTs for All Edges | bn.build_cpts_from_structure() |
| Make Plots | |
| Plotting | bn.plot() |
| Plot Graphviz | bn.plot_graphviz() |
| Compare 2 Networks | bn.compare_networks() |
| Load DAG (bif files) | bn.import_DAG() |
| Load Examples | bn.import_example() |
| Transformation Functions | |
| Convert DAG to Undirected | bn.to_undirected() |
| Convert to one-hot | bn.df2onehot() |
| Convert Adjacency Matrix to Vector | bn.adjmat2vec() |
| Convert Adjacency Matrix to Dictionary | bn.adjmat2dict() |
| Convert Vector to Adjacency Matrix | bn.vec2adjmat() |
| Convert DAG to Adjacency Matrix | bn.dag2adjmat() |
| Convert DataFrame to Onehot | bn.df2onehot() |
| Convert Query to DataFrame | bn.query2df() |
| Convert Vector to DataFrame | bn.vec2df() |
| Metrics | |
| Compute Topological Ordering | bn.topological_sort() |
| Compute Structure Scores | bn.structure_scores() |
| General | |
| Save Model | bn.save() |
| Load Model | bn.load() |
| Print CPTs | bn.print_CPD() |
Installation
Install bnlearn from PyPI
bash
pip install bnlearn
Install bnlearn from github source
bash
pip install git+https://github.com/erdogant/bnlearn
Load library
```python
Import library
import bnlearn as bn
```
Code Examples
```python
import bnlearn as bn
# Example dataframe sprinkler_data.csv can be loaded with:
df = bn.import_example()
# df = pd.read_csv('sprinkler_data.csv')
Cloudy Sprinkler Rain Wet_Grass 0 0 1 0 1 1 1 1 1 1 2 1 0 1 1 3 0 0 1 1 4 1 0 1 1 .. ... ... ... ... 995 0 0 0 0 996 1 0 0 0 997 0 0 1 0 998 1 1 0 1 999 1 0 1 1
model = bn.structure_learning.fit(df)
# Compute edge strength with the chi-square test statistic
model = bn.independence_test(model, df)
G = bn.plot(model)
```
```python
Example: Structure Learning
model_hc_bic = bn.structure_learning.fit(df, methodtype='hc', scoretype='bic')
model_hc_k2 = bn.structure_learning.fit(df, methodtype='hc', scoretype='k2')
model_hc_bdeu = bn.structure_learning.fit(df, methodtype='hc', scoretype='bdeu')
model_ex_bic = bn.structure_learning.fit(df, methodtype='ex', scoretype='bic')
model_ex_k2 = bn.structure_learning.fit(df, methodtype='ex', scoretype='k2')
model_ex_bdeu = bn.structure_learning.fit(df, methodtype='ex', scoretype='bdeu')
model_cl = bn.structure_learning.fit(df, methodtype='cl', root_node='Wet_Grass')
model_tan = bn.structure_learning.fit(df, methodtype='tan', root_node='Wet_Grass', class_node='Rain')
Example: Parameter Learning
import bnlearn as bn
# Import dataframe
df = bn.import_example()
# As an example we set the CPD at False which returns an "empty" DAG
model = bn.import_DAG('sprinkler', CPD=False)
# Now we learn the parameters of the DAG using the df
model_update = bn.parameter_learning.fit(model, df)
# Make plot
G = bn.plot(model_update)
Example: Inference
import bnlearn as bn
model = bn.import_DAG('sprinkler')
query = bn.inference.fit(model, variables=['Rain'], evidence={'Cloudy':1,'Sprinkler':0, 'Wet_Grass':1})
print(query)
print(query.df)
# Lets try another inference
query = bn.inference.fit(model, variables=['Rain'], evidence={'Cloudy':1})
print(query)
print(query.df)
```
Contributors
Setting up and maintaining bnlearn has been possible thanks to users and contributors. Thanks to:
Maintainer
Owner
- Name: Erdogan
- Login: erdogant
- Kind: user
- Location: Den Haag
- Website: https://erdogant.github.io/
- Repositories: 51
- Profile: https://github.com/erdogant
Machine Learning | Statistics | Bayesian | D3js | Visualizations
GitHub Events
Total
- Create event: 7
- Issues event: 23
- Release event: 5
- Watch event: 64
- Issue comment event: 40
- Push event: 62
- Pull request event: 4
- Fork event: 7
Last Year
- Create event: 7
- Issues event: 23
- Release event: 5
- Watch event: 64
- Issue comment event: 40
- Push event: 62
- Pull request event: 4
- Fork event: 7
Committers
Last synced: 11 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| erdogant | e****t@g****m | 927 |
| Oliver Verver | o****r@s****l | 7 |
| ankh1999 | 8****9 | 2 |
| Michael Shapiro | 1****0 | 2 |
| Thomas Kraxner | 7****o | 1 |
| Ivy Lee | i****e | 1 |
| Ben Evans | b****n@b****o | 1 |
| Ananyapam De | a****7@g****m | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 103
- Total pull requests: 12
- Average time to close issues: 3 months
- Average time to close pull requests: 2 days
- Total issue authors: 76
- Total pull request authors: 7
- Average comments per issue: 3.92
- Average comments per pull request: 0.67
- Merged pull requests: 12
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 12
- Pull requests: 3
- Average time to close issues: about 1 month
- Average time to close pull requests: about 10 hours
- Issue authors: 10
- Pull request authors: 2
- Average comments per issue: 2.5
- Average comments per pull request: 1.0
- Merged pull requests: 3
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- PARODBE (10)
- Subbui (4)
- samanemami (4)
- adam2392 (3)
- erdogant (3)
- ms440 (2)
- piper0124 (2)
- Mikcy1595 (2)
- srivhash (2)
- arainboldt (2)
- zzzrbx (2)
- SachiniEMSPE (2)
- nsankar (1)
- arita37 (1)
- chrisflatley (1)
Pull Request Authors
- oliver3 (4)
- ankh1999 (2)
- Ananyapam7 (2)
- srivhash (2)
- Kraego (1)
- ivylee (1)
- bencevans (1)
- ms440 (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 2
-
Total downloads:
- pypi 11,597 last-month
-
Total dependent packages: 4
(may contain duplicates) -
Total dependent repositories: 13
(may contain duplicates) - Total versions: 85
- Total maintainers: 1
pypi.org: bnlearn
bnlearn is a Python package for Causal Discovery by learning the graphical structure of Bayesian networks, parameter learning, inference and sampling methods.
- Homepage: https://erdogant.github.io/bnlearn
- Documentation: https://bnlearn.readthedocs.io/
- License: MIT License Copyright (c) 2020 Erdogan Taskesen bnlearn - Python package for learning the graphical structure of Bayesian networks, parameter learning, inference and sampling methods. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-
Latest release: 0.12.0
published 8 months ago
Rankings
Maintainers (1)
proxy.golang.org: github.com/erdogant/bnlearn
- Documentation: https://pkg.go.dev/github.com/erdogant/bnlearn#section-documentation
- License: other
-
Latest release: v0.2.1
published about 6 years ago
Rankings
Dependencies
- irelease *
- pytest *
- rst2pdf *
- sphinx *
- sphinx_rtd_theme *
- spyder-kernels ==2.2.
- community *
- df2onehot *
- fsspec *
- funcsigs *
- ipywidgets *
- ismember *
- matplotlib >=
- networkx >=
- numpy *
- packaging *
- pandas *
- pgmpy >=
- pypickle *
- pyvis *
- sklearn *
- statsmodels *
- tabulate *
- tqdm *
- wget *
- community *
- df2onehot *
- fsspec *
- funcsigs *
- ipywidgets *
- ismember *
- packaging *
- pandas *
- pgmpy >=0.1.13
- pypickle *
- pyvis *
- sklearn *
- statsmodels *
- tabulate *
- tqdm *
- wget *
- actions/checkout v2 composite
- github/codeql-action/analyze v1 composite
- github/codeql-action/autobuild v1 composite
- github/codeql-action/init v1 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite