replicatebe.jl

Mixed model solution for replicate designed bioequivalence study.

https://github.com/pharmcat/replicatebe.jl

Science Score: 41.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
  • .zenodo.json file
  • DOI references
    Found 13 DOI reference(s) in README
  • Academic publication links
    Links to: zenodo.org
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (10.1%) to scientific vocabulary

Keywords

bioequivalence bioequivalence-study ema-method-c mixed-model replicate

Scientific Fields

Artificial Intelligence and Machine Learning Computer Science - 40% confidence
Last synced: 4 months ago · JSON representation ·

Repository

Mixed model solution for replicate designed bioequivalence study.

Basic Info
Statistics
  • Stars: 6
  • Watchers: 3
  • Forks: 2
  • Open Issues: 2
  • Releases: 0
Topics
bioequivalence bioequivalence-study ema-method-c mixed-model replicate
Created over 6 years ago · Last pushed about 3 years ago
Metadata Files
Readme License Citation

README.md

This program comes with absolutely no warranty. No liability is accepted for any loss and risk to public health resulting from use of this software.

Mixed model solution for replicate designed bioequivalence study. This can be used to obtained results with methods C (random effects with interaction), given by the EMA in Annex I. Statistical model formed with accordance FDA Guidance for Industry: Statistical Approaches to Establishing Bioequivalence, APPENDIX F.

Tier 1 codecov Latest docs doi DOI

Install: using Pkg; Pkg.add("ReplicateBE") Install latest version directly: using Pkg; Pkg.clone("https://github.com/PharmCat/ReplicateBE.jl.git")

Using: using ReplicateBE be = ReplicateBE.rbe!(df, dvar = :var, subject = :subject, formulation = :formulation, period = :period, sequence = :sequence); ci = confint(be, 0.1) Where:

  • dvar::Symbol - dependent variable;
  • subject::Symbol - subject;
  • formulation::Symbol - formulation/drug;
  • period::Symbol - study period;
  • sequence::Symbol - sequence.

How to get results? ```

Fixed effect table:

fixed(be)

Type III table

typeiii(be) ```

Output example: ``` Bioequivalence Linear Mixed Effect Model (status: converged)

-2REML: 329.257 REML: -164.629

Fixed effect: ─────────────────────────────────────────────────────────────────────────────────────────── Effect Value SE F DF t P|t| ─────────────────────────────────────────────────────────────────────────────────────────── (Intercept) 4.42158 0.119232 1375.21 68.6064 37.0838 4.02039E-47*
sequence: 2 0.360591 0.161776 4.96821 62.0 2.22895 0.0294511*
period: 2 0.027051 0.0533388 0.257206 122.73 0.507155 0.612956
period: 3 -0.00625777 0.0561037 0.012441 153.634 -0.111539 0.911334
period: 4 0.036742 0.0561037 0.428886 153.634 0.654894 0.513515
formulation: 2 0.0643404 0.0415345 2.39966 62.0 1.54908 0.126451
─────────────────────────────────────────────────────────────────────────────────────────── Intra-individual variance: formulation: 1 0.108629 CVᵂ: 33.87 %
formulation: 2 0.0783544 CVᵂ: 28.55 %

Inter-individual variance: formulation: 1 0.377846 formulation: 2 0.421356 ρ: 0.980288 Cov: 0.391143

Confidence intervals(90%): formulation: 1 / formulation: 2 Ratio: 93.77, CI: 87.49 - 100.5 (%) formulation: 2 / formulation: 1 Ratio: 106.65, CI: 99.5 - 114.3 (%) ```

Validation

Validation information: here, validation results you can find in table.

Basic methods

All API docs see here.

Random Dataset

Random dataset function is made for generation validation datasets and simulation data. Description here.

Structures

Struct information see here.

Acknowledgments

Best acknowledgments to D.Sc. in Physical and Mathematical Sciences Anastasia Shitova a.shitova@qayar.ru for support, datasets and testing procedures.

References

  • FDA Guidance for Industry: Statistical Approaches to Establishing Bioequivalence, 2001
  • Fletcher, Roger (1987), Practical methods of optimization (2nd ed.), New York: John Wiley & Sons, ISBN 978-0-471-91547-8
  • Giesbrecht, F. G., and Burns, J. C. (1985), "Two-Stage Analysis Based on a Mixed Model: Large-sample Asymptotic Theory and Small-Sample Simulation Results," Biometrics, 41, 853-862.
  • Gurka, Matthew. (2006). Selecting the Best Linear Mixed Model under REML. The American Statistician. 60. 19-26. 10.1198/000313006X90396.
  • Henderson, C. R., et al. “The Estimation of Environmental and Genetic Trends from Records Subject to Culling.” Biometrics, vol. 15, no. 2, 1959, pp. 192–218. JSTOR, www.jstor.org/stable/2527669.
  • Hrong-Tai Fai & Cornelius (1996) Approximate F-tests of multiple degree of freedom hypotheses in generalized least squares analyses of unbalanced split-plot experiments, Journal of Statistical Computation and Simulation, 54:4, 363-378, DOI: 10.1080/00949659608811740
  • Jennrich, R., & Schluchter, M. (1986). Unbalanced Repeated-Measures Models with Structured Covariance Matrices. Biometrics, 42(4), 805-820. doi:10.2307/2530695
  • Laird, Nan M., and James H. Ware. “Random-Effects Models for Longitudinal Data.” Biometrics, vol. 38, no. 4, 1982, pp. 963–974. JSTOR, www.jstor.org/stable/2529876.
  • Lindstrom & J.; Bates, M. (1988). Newton—Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data. Journal of the American Statistical Association. 83. 1014. 10.1080/01621459.1988.10478693.
  • Mogensen et al., (2018). Optim: A mathematical optimization package for Julia. Journal of Open Source Software, 3(24), 615,doi: 10.21105/joss.00615
  • Patterson, S. D. and Jones, B. (2002), Bioequivalence and the pharmaceutical industry. Pharmaceut. Statist., 1: 83-95. doi:10.1002/pst.15
  • Revels, Jarrett & Lubin, Miles & Papamarkou, Theodore. (2016). Forward-Mode Automatic Differentiation in Julia.
  • Schaalje GB, McBride JB, Fellingham GW. Adequacy of approximations to distributions of test statistics in complex mixed linear models. J Agric Biol Environ Stat. 2002;7:512–24.
  • Van Peer, A. (2010), Variability and Impact on Design of Bioequivalence Studies. Basic & Clinical Pharmacology & Toxicology, 106: 146-153. doi:10.1111/j.1742-7843.2009.00485.x
  • Wolfinger et al., (1994) Computing gaussian likelihoods and their derivatives for general linear mixed models doi: 10.1137/0915079
  • Wright, Stephen, and Jorge Nocedal (2006) "Numerical optimization." Springer

Author: Vladimir Arnautov aka PharmCat Copyright © 2019 Vladimir Arnautov mail@pharmcat.net

Owner

  • Name: PharmCat
  • Login: PharmCat
  • Kind: user
  • Location: Msk
  • Company: PharmCat.net

Clinical trial design and data analysis.

Citation (CITATION.bib)



@article{article,
author = {, LINDSTROM and J.; BATES, M},
year = {1988},
month = {06},
pages = {1014},
title = {Newton—Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data},
volume = {83},
journal = {Journal of the American Statistical Association},
doi = {10.1080/01621459.1988.10478693}
}

@article{article,
author = {Gurka, Matthew},
year = {2006},
month = {02},
pages = {19-26},
title = {Selecting the Best Linear Mixed Model under REML},
volume = {60},
journal = {The American Statistician},
doi = {10.1198/000313006X90396}
}

@article{article,
author = {Wolfinger, Russ},
year = {1993},
month = {01},
pages = {1079-1106},
title = {Covariance structure selection in general mixed models},
volume = {22},
journal = {Communications in Statistics-simulation and Computation - COMMUN STATIST-SIMULAT COMPUT},
doi = {10.1080/03610919308813143}
}

@article{article,
author = {R Henderson, C},
year = {1984},
month = {01},
pages = {},
title = {Application of Linear Models in Animal Breeding}
}

@article{article,
author = {Giesbrecht, F.G. and Burns, Joseph},
year = {1985},
month = {06},
pages = {},
title = {Two-Stage Analysis Based on a Mixed Model: Large-Sample Asymptotic Theory and Small-Sample Simulation Results},
volume = {41},
journal = {Biometrics},
doi = {10.2307/2530872}
}

@article{article,
author = {G. Kenward, Michael and Roger, James},
year = {1997},
month = {10},
pages = {983-97},
title = {Small Sample Inference for Fixed Effects From Restricted Maximum Likelihood},
volume = {53},
journal = {Biometrics},
doi = {10.2307/2533558}
} 

#Julia

@article{Julia-2017,
    title={Julia: A fresh approach to numerical computing},
    author={Bezanson, Jeff and Edelman, Alan and Karpinski, Stefan and Shah, Viral B},
    journal={SIAM {R}eview},
    volume={59},
    number={1},
    pages={65--98},
    year={2017},
    publisher={SIAM},
    doi={10.1137/141000671}
}

#ForwardDiff

@article{RevelsLubinPapamarkou2016,
    title = {Forward-Mode Automatic Differentiation in Julia},
   author = {{Revels}, J. and {Lubin}, M. and {Papamarkou}, T.},
  journal = {arXiv:1607.07892 [cs.MS]},
     year = {2016},
     url = {https://arxiv.org/abs/1607.07892}
}

#Optim

@article{mogensen2018optim,
  author  = {Mogensen, Patrick Kofod and Riseth, Asbj{\o}rn Nilsen},
  title   = {Optim: A mathematical optimization package for {Julia}},
  journal = {Journal of Open Source Software},
  year    = {2018},
  volume  = {3},
  number  = {24},
  pages   = {615},
  doi     = {10.21105/joss.00615}
}

GitHub Events

Total
Last Year

Committers

Last synced: almost 3 years ago

All Time
  • Total Commits: 342
  • Total Committers: 6
  • Avg Commits per committer: 57.0
  • Development Distribution Score (DDS): 0.266
Top Committers
Name Email Commits
PharmCat v****v@y****u 251
PharmCat m****l@p****t 56
PharmCat r****d@y****u 15
PharmCat 1****t@u****m 15
github-actions[bot] 4****]@u****m 4
Julia TagBot 5****t@u****m 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 9 months ago

All Time
  • Total issues: 8
  • Total pull requests: 25
  • Average time to close issues: about 2 months
  • Average time to close pull requests: 9 days
  • Total issue authors: 4
  • Total pull request authors: 3
  • Average comments per issue: 2.0
  • Average comments per pull request: 0.4
  • Merged pull requests: 21
  • Bot issues: 0
  • Bot pull requests: 6
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • PharmCat (5)
  • skyee1 (1)
  • rfourquet (1)
  • JuliaTagBot (1)
Pull Request Authors
  • PharmCat (18)
  • github-actions[bot] (6)
  • JuliaTagBot (1)
Top Labels
Issue Labels
enhancement (1) breaking (1) performance (1)
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads: unknown
  • Total dependent packages: 0
  • Total dependent repositories: 0
  • Total versions: 22
juliahub.com: ReplicateBE

Mixed model solution for replicate designed bioequivalence study.

  • Versions: 22
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 9.9%
Average: 31.8%
Forks count: 33.3%
Dependent packages count: 38.9%
Stargazers count: 45.1%
Last synced: 5 months ago