mmaction2
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark
Science Score: 64.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
✓Academic publication links
Links to: arxiv.org -
✓Committers with academic emails
3 of 76 committers (3.9%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (9.9%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark
Basic Info
- Host: GitHub
- Owner: open-mmlab
- License: apache-2.0
- Language: Python
- Default Branch: main
- Homepage: https://mmaction2.readthedocs.io
- Size: 68.2 MB
Statistics
- Stars: 4,731
- Watchers: 41
- Forks: 1,306
- Open Issues: 312
- Releases: 28
Topics
Metadata Files
README.md
English | 简体中文
📄 Table of Contents
- 📄 Table of Contents
- 🥳 🚀 What's New
- 📖 Introduction
- 🎁 Major Features
- 🛠️ Installation
- 👀 Model Zoo
- 👨🏫 Get Started
- 🎫 License
- 🖊️ Citation
- 🙌 Contributing
- 🤝 Acknowledgement
- 🏗️ Projects in OpenMMLab
🥳 🚀 What's New 🔝
The default branch has been switched to main(previous 1.x) from master(current 0.x), and we encourage users to migrate to the latest version with more supported models, stronger pre-training checkpoints and simpler coding. Please refer to Migration Guide for more details.
Release (2023.10.12): v1.2.0 with the following new features:
- Support VindLU multi-modality algorithm and the Training of ActionClip
- Support lightweight model MobileOne TSN/TSM
- Support video retrieval dataset MSVD
- Support SlowOnly K700 feature to train localization models
- Support Video and Audio Demos
📖 Introduction 🔝
MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project.
Action Recognition on Kinetics-400 (left) and Skeleton-based Action Recognition on NTU-RGB+D-120 (right)

Skeleton-based Spatio-Temporal Action Detection and Action Recognition Results on Kinetics-400

Spatio-Temporal Action Detection Results on AVA-2.1
🎁 Major Features 🔝
Modular design: We decompose a video understanding framework into different components. One can easily construct a customized video understanding framework by combining different modules.
Support five major video understanding tasks: MMAction2 implements various algorithms for multiple video understanding tasks, including action recognition, action localization, spatio-temporal action detection, skeleton-based action detection and video retrieval.
Well tested and documented: We provide detailed documentation and API reference, as well as unit tests.
🛠️ Installation 🔝
MMAction2 depends on PyTorch, MMCV, MMEngine, MMDetection (optional) and MMPose (optional).
Please refer to install.md for detailed instructions.
Quick instructions
```shell conda create --name openmmlab python=3.8 -y conda activate openmmlab conda install pytorch torchvision -c pytorch # This command will automatically install the latest version PyTorch and cudatoolkit, please check whether they match your environment. pip install -U openmim mim install mmengine mim install mmcv mim install mmdet # optional mim install mmpose # optional git clone https://github.com/open-mmlab/mmaction2.git cd mmaction2 pip install -v -e . ```👀 Model Zoo 🔝
Results and models are available in the model zoo.
Supported model
| Action Recognition | ||||
| C3D (CVPR'2014) | TSN (ECCV'2016) | I3D (CVPR'2017) | C2D (CVPR'2018) | I3D Non-Local (CVPR'2018) |
| R(2+1)D (CVPR'2018) | TRN (ECCV'2018) | TSM (ICCV'2019) | TSM Non-Local (ICCV'2019) | SlowOnly (ICCV'2019) |
| SlowFast (ICCV'2019) | CSN (ICCV'2019) | TIN (AAAI'2020) | TPN (CVPR'2020) | X3D (CVPR'2020) |
| MultiModality: Audio (ArXiv'2020) | TANet (ArXiv'2020) | TimeSformer (ICML'2021) | ActionCLIP (ArXiv'2021) | VideoSwin (CVPR'2022) |
| VideoMAE (NeurIPS'2022) | MViT V2 (CVPR'2022) | UniFormer V1 (ICLR'2022) | UniFormer V2 (Arxiv'2022) | VideoMAE V2 (CVPR'2023) |
| Action Localization | ||||
| BSN (ECCV'2018) | BMN (ICCV'2019) | TCANet (CVPR'2021) | ||
| Spatio-Temporal Action Detection | ||||
| ACRN (ECCV'2018) | SlowOnly+Fast R-CNN (ICCV'2019) | SlowFast+Fast R-CNN (ICCV'2019) | LFB (CVPR'2019) | VideoMAE (NeurIPS'2022) |
| Skeleton-based Action Recognition | ||||
| ST-GCN (AAAI'2018) | 2s-AGCN (CVPR'2019) | PoseC3D (CVPR'2022) | STGCN++ (ArXiv'2022) | CTRGCN (CVPR'2021) |
| MSG3D (CVPR'2020) | ||||
| Video Retrieval | ||||
| CLIP4Clip (ArXiv'2022) | ||||
Supported dataset
| Action Recognition | |||
| HMDB51 (Homepage) (ICCV'2011) | UCF101 (Homepage) (CRCV-IR-12-01) | ActivityNet (Homepage) (CVPR'2015) | Kinetics-[400/600/700] (Homepage) (CVPR'2017) |
| SthV1 (ICCV'2017) | SthV2 (Homepage) (ICCV'2017) | Diving48 (Homepage) (ECCV'2018) | Jester (Homepage) (ICCV'2019) |
| Moments in Time (Homepage) (TPAMI'2019) | Multi-Moments in Time (Homepage) (ArXiv'2019) | HVU (Homepage) (ECCV'2020) | OmniSource (Homepage) (ECCV'2020) |
| FineGYM (Homepage) (CVPR'2020) | Kinetics-710 (Homepage) (Arxiv'2022) | ||
| Action Localization | |||
| THUMOS14 (Homepage) (THUMOS Challenge 2014) | ActivityNet (Homepage) (CVPR'2015) | HACS (Homepage) (ICCV'2019) | |
| Spatio-Temporal Action Detection | |||
| UCF101-24* (Homepage) (CRCV-IR-12-01) | JHMDB* (Homepage) (ICCV'2015) | AVA (Homepage) (CVPR'2018) | AVA-Kinetics (Homepage) (Arxiv'2020) |
| MultiSports (Homepage) (ICCV'2021) | |||
| Skeleton-based Action Recognition | |||
| PoseC3D-FineGYM (Homepage) (ArXiv'2021) | PoseC3D-NTURGB+D (Homepage) (ArXiv'2021) | PoseC3D-UCF101 (Homepage) (ArXiv'2021) | PoseC3D-HMDB51 (Homepage) (ArXiv'2021) |
| Video Retrieval | |||
| MSRVTT (Homepage) (CVPR'2016) | |||
👨🏫 Get Started 🔝
For tutorials, we provide the following user guides for basic usage:
- Migration from MMAction2 0.X
- Learn about Configs
- Prepare Datasets
- Inference with Existing Models
- Training and Testing
Research works built on MMAction2 by users from community
- Video Swin Transformer. [\[paper\]](https://arxiv.org/abs/2106.13230)[\[github\]](https://github.com/SwinTransformer/Video-Swin-Transformer) - Evidential Deep Learning for Open Set Action Recognition, ICCV 2021 **Oral**. [\[paper\]](https://arxiv.org/abs/2107.10161)[\[github\]](https://github.com/Cogito2012/DEAR) - Rethinking Self-supervised Correspondence Learning: A Video Frame-level Similarity Perspective, ICCV 2021 **Oral**. [\[paper\]](https://arxiv.org/abs/2103.17263)[\[github\]](https://github.com/xvjiarui/VFS)🎫 License 🔝
This project is released under the Apache 2.0 license.
🖊️ Citation 🔝
If you find this project useful in your research, please consider cite:
BibTeX
@misc{2020mmaction2,
title={OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark},
author={MMAction2 Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmaction2}},
year={2020}
}
🙌 Contributing 🔝
We appreciate all contributions to improve MMAction2. Please refer to CONTRIBUTING.md in MMCV for more details about the contributing guideline.
🤝 Acknowledgement 🔝
MMAction2 is an open-source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features and users who give valuable feedback. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their new models.
🏗️ Projects in OpenMMLab 🔝
- MMEngine: OpenMMLab foundational library for training deep learning models.
- MMCV: OpenMMLab foundational library for computer vision.
- MIM: MIM installs OpenMMLab packages.
- MMEval: A unified evaluation library for multiple machine learning libraries.
- MMPreTrain: OpenMMLab pre-training toolbox and benchmark.
- MMDetection: OpenMMLab detection toolbox and benchmark.
- MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
- MMRotate: OpenMMLab rotated object detection toolbox and benchmark.
- MMYOLO: OpenMMLab YOLO series toolbox and benchmark.
- MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
- MMOCR: OpenMMLab text detection, recognition, and understanding toolbox.
- MMPose: OpenMMLab pose estimation toolbox and benchmark.
- MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
- MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
- MMRazor: OpenMMLab model compression toolbox and benchmark.
- MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
- MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
- MMTracking: OpenMMLab video perception toolbox and benchmark.
- MMFlow: OpenMMLab optical flow toolbox and benchmark.
- MMagic: OpenMMLab Advanced, Generative and Intelligent Creation toolbox.
- MMGeneration: OpenMMLab image and video generative models toolbox.
- MMDeploy: OpenMMLab model deployment framework.
- Playground: A central hub for gathering and showcasing amazing projects built upon OpenMMLab.
Owner
- Name: OpenMMLab
- Login: open-mmlab
- Kind: organization
- Location: China
- Website: https://openmmlab.com
- Twitter: OpenMMLab
- Repositories: 53
- Profile: https://github.com/open-mmlab
Citation (CITATION.cff)
cff-version: 1.2.0 message: "If you use this software, please cite it as below." authors: - name: "MMAction2 Contributors" title: "OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark" date-released: 2020-07-21 url: "https://github.com/open-mmlab/mmaction2" license: Apache-2.0
GitHub Events
Total
- Issues event: 13
- Watch event: 487
- Issue comment event: 63
- Pull request event: 7
- Fork event: 80
Last Year
- Issues event: 13
- Watch event: 487
- Issue comment event: 63
- Pull request event: 7
- Fork event: 80
Committers
Last synced: 9 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| linjintao | l****o@s****m | 467 |
| Haodong Duan | d****z@g****m | 268 |
| cir7 | 3****7 | 134 |
| wxDai | d****n@p****n | 128 |
| Kai Hu | k****u@g****m | 82 |
| lixuanyi | l****i@s****m | 74 |
| xusu | x****u@s****m | 72 |
| lizz | l****z@s****m | 55 |
| congee | 3****4 | 47 |
| irvingzhang0512 | i****2@g****m | 45 |
| duanhaodong | d****g@s****m | 41 |
| gengenkai | 3****i | 38 |
| Jiaqi Tang | 6****8@q****m | 22 |
| chenkai | c****i@s****m | 21 |
| jiaomenglei | j****i@s****m | 15 |
| wangshiguang | w****g@s****m | 11 |
| Rejnald Lleshi | 4****i | 9 |
| Kai Chen | c****v@g****m | 9 |
| LinXiaoZheng | 9****o | 4 |
| makecent | 4****t | 4 |
| Yining Li | l****2@g****m | 4 |
| Wang Xiao | 3****o | 4 |
| zhaowangbo.vendor | z****o@p****n | 3 |
| wangruohui | 1****i | 3 |
| Michael P. Camilleri | m****i@e****k | 3 |
| Jamie | j****5 | 3 |
| Shoufa Chen | s****n@1****m | 2 |
| Jas | j****g@s****m | 2 |
| Ycr | 3****i | 2 |
| yrqUni | 3****i | 2 |
| and 46 more... | ||
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 308
- Total pull requests: 151
- Average time to close issues: 21 days
- Average time to close pull requests: 21 days
- Total issue authors: 215
- Total pull request authors: 51
- Average comments per issue: 2.7
- Average comments per pull request: 1.17
- Merged pull requests: 75
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 18
- Pull requests: 7
- Average time to close issues: 6 days
- Average time to close pull requests: 4 minutes
- Issue authors: 18
- Pull request authors: 4
- Average comments per issue: 0.56
- Average comments per pull request: 0.71
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- Ishihara-Masabumi (16)
- KunLiam (7)
- Sunshulong (5)
- ya-92626 (5)
- MABatin (5)
- aixiaodewugege (5)
- rlleshi (5)
- xqc-qc (4)
- Aidenxu0305 (4)
- JasseurHadded1 (4)
- makecent (3)
- rouge012 (3)
- commandermsv (3)
- wwdok (3)
- Better369 (3)
Pull Request Authors
- cir7 (45)
- Dai-Wenxun (23)
- hukkai (7)
- Zheng-LinXiao (4)
- chaos1203 (4)
- jts250 (4)
- Aierhaimian (3)
- nardellimar25 (3)
- rlleshi (3)
- snake-head (3)
- HoBeom (2)
- makecent (2)
- rjfc (2)
- kennymckormick (2)
- minhhoang2705 (2)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 4
-
Total downloads:
- pypi 4,851 last-month
-
Total dependent packages: 1
(may contain duplicates) -
Total dependent repositories: 20
(may contain duplicates) - Total versions: 54
- Total maintainers: 2
pypi.org: mmaction2
OpenMMLab Video Understanding Toolbox and Benchmark
- Homepage: https://github.com/open-mmlab/mmaction2
- Documentation: https://mmaction2.readthedocs.io/
- License: Apache License 2.0
-
Latest release: 1.2.0
published over 2 years ago
Rankings
Maintainers (1)
proxy.golang.org: github.com/open-mmlab/mmaction2
- Documentation: https://pkg.go.dev/github.com/open-mmlab/mmaction2#section-documentation
- License: apache-2.0
-
Latest release: v1.2.0
published over 2 years ago
Rankings
pypi.org: mmaction
OpenMMLab Action Understanding Toolbox and Benchmark
- Homepage: https://github.com/open-mmlab/mmaction2
- Documentation: https://mmaction.readthedocs.io/
- License: Apache License 2.0
-
Latest release: 0.5.0
published over 5 years ago
Rankings
Maintainers (1)
pypi.org: otxmmaction2
OpenMMLab Video Understanding Toolbox and Benchmark
- Homepage: https://github.com/open-mmlab/mmaction2
- Documentation: https://otxmmaction2.readthedocs.io/
- License: Apache License 2.0
-
Latest release: 1.2.0
published about 2 years ago
Rankings
Maintainers (1)
Dependencies
- actions/checkout v2 composite
- actions/setup-python v2 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- codecov/codecov-action v1.0.14 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- codecov/codecov-action v1.0.14 composite
- actions/checkout v2 composite
- actions/setup-python v2 composite
- pytorch/pytorch ${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel build
- pytorch/pytorch ${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel build
- pytorch/pytorch ${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel build
- Pillow *
- decord >=0.4.1
- einops *
- matplotlib *
- numpy *
- opencv-contrib-python *
- scipy *
- torch >=1.3
- docutils ==0.18.1
- einops *
- modelindex *
- myst-parser *
- opencv-python *
- scipy *
- sphinx ==6.1.3
- sphinx-notfound-page *
- sphinx-tabs *
- sphinx_copybutton *
- sphinx_markdown_tables *
- sphinxcontrib-jquery *
- tabulate *
- mmcv >=2.0.0rc4,<2.2.0
- mmengine >=0.7.1,<1.0.0
- transformers >=4.28.0
- PyTurboJPEG *
- av >=9.0
- future *
- imgaug *
- librosa *
- lmdb *
- moviepy *
- openai-clip *
- packaging *
- pims *
- soundfile *
- tensorboard *
- wandb *
- mmcv *
- titlecase *
- torch *
- torchvision *
- coverage * test
- flake8 * test
- interrogate * test
- isort ==4.3.21 test
- parameterized * test
- pytest * test
- pytest-runner * test
- xdoctest >=0.10.0 test
- yapf * test
- ca-certificates 2020.1.1.*
- certifi 2020.4.5.1.*
- ffmpeg 2.8.6.*
- libcxx 10.0.0.*
- libedit 3.1.20181209.*
- libffi 3.3.*
- ncurses 6.2.*
- openssl 1.1.1g.*
- pip 20.0.2.*
- python 3.7.7.*
- readline 8.0.*
- setuptools 46.4.0.*
- sqlite 3.31.1.*
- tk 8.6.8.*
- wheel 0.34.2.*
- xz 5.2.5.*
- zlib 1.2.11.*
- ca-certificates 2020.1.1.*
- certifi 2020.4.5.1.*
- ffmpeg 2.8.6.*
- libcxx 10.0.0.*
- libedit 3.1.20181209.*
- libffi 3.3.*
- ncurses 6.2.*
- openssl 1.1.1g.*
- pip 20.0.2.*
- python 3.7.7.*
- readline 8.0.*
- setuptools 46.4.0.*
- sqlite 3.31.1.*
- tk 8.6.8.*
- wheel 0.34.2.*
- xz 5.2.5.*
- zlib 1.2.11.*
- ca-certificates 2020.1.1.*
- certifi 2020.4.5.1.*
- ffmpeg 2.8.6.*
- libcxx 10.0.0.*
- libedit 3.1.20181209.*
- libffi 3.3.*
- ncurses 6.2.*
- openssl 1.1.1g.*
- pip 20.0.2.*
- python 3.7.7.*
- readline 8.0.*
- setuptools 46.4.0.*
- sqlite 3.31.1.*
- tk 8.6.8.*
- wheel 0.34.2.*
- xz 5.2.5.*
- zlib 1.2.11.*
- ca-certificates 2020.1.1.*
- certifi 2020.4.5.1.*
- ffmpeg 2.8.6.*
- libcxx 10.0.0.*
- libedit 3.1.20181209.*
- libffi 3.3.*
- ncurses 6.2.*
- openssl 1.1.1g.*
- pip 20.0.2.*
- python 3.7.7.*
- readline 8.0.*
- setuptools 46.4.0.*
- sqlite 3.31.1.*
- tk 8.6.8.*
- wheel 0.34.2.*
- xz 5.2.5.*
- zlib 1.2.11.*





