Science Score: 64.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
✓Academic publication links
Links to: arxiv.org -
✓Committers with academic emails
3 of 31 committers (9.7%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.5%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
A PyTorch Library for Meta-learning Research
Basic Info
- Host: GitHub
- Owner: learnables
- License: mit
- Language: Python
- Default Branch: master
- Homepage: http://learn2learn.net
- Size: 9.52 MB
Statistics
- Stars: 2,825
- Watchers: 30
- Forks: 362
- Open Issues: 32
- Releases: 11
Topics
Metadata Files
README.md

learn2learn is a software library for meta-learning research.
learn2learn builds on top of PyTorch to accelerate two aspects of the meta-learning research cycle:
- fast prototyping, essential in letting researchers quickly try new ideas, and
- correct reproducibility, ensuring that these ideas are evaluated fairly.
learn2learn provides low-level utilities and unified interface to create new algorithms and domains, together with high-quality implementations of existing algorithms and standardized benchmarks. It retains compatibility with torchvision, torchaudio, torchtext, cherry, and any other PyTorch-based library you might be using.
To learn more, see our whitepaper: arXiv:2008.12284
Overview
learn2learn.data:Tasksetand transforms to create few-shot tasks from any PyTorch dataset.learn2learn.vision: Models, datasets, and benchmarks for computer vision and few-shot learning.learn2learn.gym: Environment and utilities for meta-reinforcement learning.learn2learn.algorithms: High-level wrappers for existing meta-learning algorithms.learn2learn.optim: Utilities and algorithms for differentiable optimization and meta-descent.
Resources
- Website: http://learn2learn.net/
- Documentation: http://learn2learn.net/docs/learn2learn
- Tutorials: http://learn2learn.net/tutorials/getting_started/
- Examples: https://github.com/learnables/learn2learn/tree/master/examples
- GitHub: https://github.com/learnables/learn2learn/
- Slack: http://slack.learn2learn.net/
Installation
~~~bash pip install learn2learn ~~~
Snippets & Examples
The following snippets provide a sneak peek at the functionalities of learn2learn.
High-level Wrappers
Few-Shot Learning with MAML
For more algorithms (ProtoNets, ANIL, Meta-SGD, Reptile, Meta-Curvature, KFO) refer to the examples folder. Most of them can be implemented with with the `GBML` wrapper. (documentation). ~~~python maml = l2l.algorithms.MAML(model, lr=0.1) opt = torch.optim.SGD(maml.parameters(), lr=0.001) for iteration in range(10): opt.zero_grad() task_model = maml.clone() # torch.clone() for nn.Modules adaptation_loss = compute_loss(task_model) task_model.adapt(adaptation_loss) # computes gradient, update task_model in-place evaluation_loss = compute_loss(task_model) evaluation_loss.backward() # gradients w.r.t. maml.parameters() opt.step() ~~~Meta-Descent with Hypergradient
Learn any kind of optimization algorithm with the `LearnableOptimizer`. (example and documentation) ~~~python linear = nn.Linear(784, 10) transform = l2l.optim.ModuleTransform(l2l.nn.Scale) metaopt = l2l.optim.LearnableOptimizer(linear, transform, lr=0.01) # metaopt has .step() opt = torch.optim.SGD(metaopt.parameters(), lr=0.001) # metaopt also has .parameters() metaopt.zero_grad() opt.zero_grad() error = loss(linear(X), y) error.backward() opt.step() # update metaopt metaopt.step() # update linear ~~~Learning Domains
Custom Few-Shot Dataset
Many standardized datasets (Omniglot, mini-/tiered-ImageNet, FC100, CIFAR-FS) are readily available in `learn2learn.vision.datasets`. (documentation) ~~~python dataset = l2l.data.MetaDataset(MyDataset()) # any PyTorch dataset transforms = [ # Easy to define your own transform l2l.data.transforms.NWays(dataset, n=5), l2l.data.transforms.KShots(dataset, k=1), l2l.data.transforms.LoadData(dataset), ] taskset = Taskset(dataset, transforms, num_tasks=20000) for task in taskset: X, y = task # Meta-train on the task ~~~Environments and Utilities for Meta-RL
Parallelize your own meta-environments with `AsyncVectorEnv`, or use the standardized ones. (documentation) ~~~python def make_env(): env = l2l.gym.HalfCheetahForwardBackwardEnv() env = cherry.envs.ActionSpaceScaler(env) return env env = l2l.gym.AsyncVectorEnv([make_env for _ in range(16)]) # uses 16 threads for task_config in env.sample_tasks(20): env.set_task(task) # all threads receive the same task state = env.reset() # use standard Gym API action = my_policy(env) env.step(action) ~~~Low-Level Utilities
Differentiable Optimization
Learn and differentiate through updates of PyTorch Modules. (documentation) ~~~python model = MyModel() transform = l2l.optim.KroneckerTransform(l2l.nn.KroneckerLinear) learned_update = l2l.optim.ParameterUpdate( # learnable update function model.parameters(), transform) clone = l2l.clone_module(model) # torch.clone() for nn.Modules error = loss(clone(X), y) updates = learned_update( # similar API as torch.autograd.grad error, clone.parameters(), create_graph=True, ) l2l.update_module(clone, updates=updates) loss(clone(X), y).backward() # Gradients w.r.t model.parameters() and learned_update.parameters() ~~~Changelog
A human-readable changelog is available in the CHANGELOG.md file.
Citation
To cite the learn2learn repository in your academic publications, please use the following reference.
Arnold, Sebastien M. R., Praateek Mahajan, Debajyoti Datta, Ian Bunner, and Konstantinos Saitas Zarkias. 2020. “learn2learn: A Library for Meta-Learning Research.” arXiv [cs.LG]. http://arxiv.org/abs/2008.12284.
You can also use the following Bibtex entry.
~~~bib @article{Arnold2020-ss, title = "learn2learn: A Library for {Meta-Learning} Research", author = "Arnold, S{\'e}bastien M R and Mahajan, Praateek and Datta, Debajyoti and Bunner, Ian and Zarkias, Konstantinos Saitas", month = aug, year = 2020, url = "http://arxiv.org/abs/2008.12284", archivePrefix = "arXiv", primaryClass = "cs.LG", eprint = "2008.12284" }
~~~
Acknowledgements & Friends
- TorchMeta is similar library, with a focus on datasets for supervised meta-learning.
- higher is a PyTorch library that enables differentiating through optimization inner-loops. While they monkey-patch
nn.Moduleto be stateless, learn2learn retains the stateful PyTorch look-and-feel. For more information, refer to their ArXiv paper. - We are thankful to the following open-source implementations which helped guide the design of learn2learn:
- Tristan Deleu's pytorch-maml-rl
- Jonas Rothfuss' ProMP
- Kwonjoon Lee's MetaOptNet
- Han-Jia Ye's and Hexiang Hu's FEAT
Owner
- Name: learnables
- Login: learnables
- Kind: organization
- Repositories: 2
- Profile: https://github.com/learnables
Citation (CITATION.cff)
cff-version: 1.2.0 message: "If you use this software, please cite it as below." authors: - family-names: "Arnold" given-names: "Sebastien M. R." - family-names: "Mahajan" given-names: "Praateek" - family-names: "Datta" given-names: "Debajyoti" - family-names: "Bunner" given-names: "Ian" - family-names: "Saitas Zarkias" given-names: "Konstantinos" title: "learn2learn: A Library for Meta-Learning Research" version: 0.1.5 date-released: 2020-08-27 url: "https://github.com/learnables/learn2learn"
GitHub Events
Total
- Issues event: 2
- Watch event: 175
- Issue comment event: 5
- Fork event: 19
Last Year
- Issues event: 2
- Watch event: 175
- Issue comment event: 5
- Fork event: 19
Committers
Last synced: 9 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Séb Arnold | s****1@h****m | 177 |
| Praateek Mahajan | p****m@g****m | 55 |
| debajyotidatta | d****2@g****m | 18 |
| Varad Pimpalkhute | 3****n | 8 |
| Ian Bunner | b****r@u****u | 6 |
| Debajyoti Datta | d****o@D****l | 4 |
| Kostis-S-Z | K****Z | 4 |
| 8bitmp3 | 1****3 | 4 |
| Jan Bollenbacher | j****n@b****o | 3 |
| Théo Morales | t****r@g****m | 2 |
| Joel Joseph | 3****n | 1 |
| Jorge | 4****f | 1 |
| Kristian Georgiev | k****g@m****u | 1 |
| Mayug Maniparambil | 3****g | 1 |
| Michael Moor | m****r@g****m | 1 |
| Nimish | n****i@g****m | 1 |
| EVKrikunov | 4****V | 1 |
| Ethan Harris | e****3@s****k | 1 |
| Farzam khodajoo | a****o@g****m | 1 |
| Isak Falk | i****k@l****e | 1 |
| vfdev | v****5@g****m | 1 |
| kzhang2 | k****g@g****m | 1 |
| joemzhao | j****o | 1 |
| dependabot[bot] | 4****] | 1 |
| Zhaofeng Wu | w****7@g****m | 1 |
| Tsam Kiu Pun | e****n@g****m | 1 |
| TrellixVulnTeam | 1****m | 1 |
| Tim | t****m@w****e | 1 |
| Tianye Shu | 4****y | 1 |
| Stergiadis Manos | s****7@g****m | 1 |
| and 1 more... | ||
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 168
- Total pull requests: 50
- Average time to close issues: 4 months
- Average time to close pull requests: 2 months
- Total issue authors: 76
- Total pull request authors: 14
- Average comments per issue: 3.58
- Average comments per pull request: 1.58
- Merged pull requests: 37
- Bot issues: 0
- Bot pull requests: 1
Past Year
- Issues: 2
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 2
- Pull request authors: 0
- Average comments per issue: 0.0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- brando90 (27)
- jkang1640 (5)
- farzam-khodajoo (3)
- patricks-lab (3)
- AntreasAntoniou (2)
- DubiousCactus (2)
- joshuasv (2)
- swaggyP9527 (2)
- seba-1511 (2)
- CorleoneJW (1)
- furkanpala (1)
- Jeong-Bin (1)
- fankaisheng (1)
- xuliwalker (1)
- gsygsy96 (1)
Pull Request Authors
- seba-1511 (8)
- DubiousCactus (5)
- nightlessbaron (5)
- TroddenSpade (2)
- qthequartermasterman (1)
- SliverySky (1)
- mi92 (1)
- steremma (1)
- jorgectf (1)
- KrikunovEV (1)
- TrellixVulnTeam (1)
- farzam-khodajoo (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 3
-
Total downloads:
- pypi 1,682 last-month
- Total docker downloads: 62
-
Total dependent packages: 1
(may contain duplicates) -
Total dependent repositories: 55
(may contain duplicates) - Total versions: 35
- Total maintainers: 1
pypi.org: learn2learn
PyTorch Library for Meta-Learning Research
- Homepage: https://github.com/learnables/learn2learn
- Documentation: https://learn2learn.readthedocs.io/
- License: MIT
-
Latest release: 0.2.0
published over 2 years ago
Rankings
Maintainers (1)
proxy.golang.org: github.com/learnables/learn2learn
- Documentation: https://pkg.go.dev/github.com/learnables/learn2learn#section-documentation
- License: mit
-
Latest release: v0.2.1
published over 2 years ago
Rankings
pypi.org: learn2learn-dev
PyTorch Meta-Learning Framework for Researchers
- Homepage: https://github.com/learnables/learn2learn
- Documentation: https://learn2learn-dev.readthedocs.io/
- License: MIT
-
Latest release: 0.1.0
published almost 6 years ago