Science Score: 64.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
✓Academic publication links
Links to: arxiv.org -
✓Committers with academic emails
7 of 31 committers (22.6%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (11.5%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
OpenML AutoML Benchmarking Framework
Basic Info
- Host: GitHub
- Owner: openml
- License: mit
- Language: Python
- Default Branch: master
- Homepage: https://openml.github.io/automlbenchmark
- Size: 115 MB
Statistics
- Stars: 432
- Watchers: 15
- Forks: 138
- Open Issues: 117
- Releases: 14
Topics
Metadata Files
docs/readme.md
AutoML Benchmark
The OpenML AutoML Benchmark provides a framework for evaluating and comparing open-source AutoML systems. The system is extensible because you can add your own AutoML frameworks and datasets. For a thorough explanation of the benchmark, and evaluation of results, you can read our paper.
Automatic Machine Learning (AutoML) systems automatically build machine learning pipelines or neural architectures in a data-driven, objective, and automatic way. They automate a lot of drudge work in designing machine learning systems, so that better systems can be developed, faster. However, AutoML research is also slowed down by two factors:
We currently lack standardized, easily-accessible benchmarking suites of tasks (datasets) that are curated to reflect important problem domains, practical to use, and sufficiently challenging to support a rigorous analysis of performance results.
Subtle differences in the problem definition, such as the design of the hyperparameter search space or the way time budgets are defined, can drastically alter a task’s difficulty. This issue makes it difficult to reproduce published research and compare results from different papers.
This toolkit aims to address these problems by setting up standardized environments for in-depth experimentation with a wide range of AutoML systems.
Website: https://openml.github.io/automlbenchmark/index.html
Documentation: https://openml.github.io/automlbenchmark/docs/index.html
Installation: https://openml.github.io/automlbenchmark/docs/getting_started/
Features:
- Curated suites of benchmarking datasets from OpenML (regression, classification).
- Includes code to benchmark a number of popular AutoML systems on regression and classification tasks.
- New AutoML systems can be added
- Experiments can be run in Docker or Singularity containers
- Execute experiments locally or on AWS
Owner
- Name: OpenML
- Login: openml
- Kind: organization
- Email: openmlhq@googlegroups.com
- Location: The Future
- Website: http://www.openml.org
- Twitter: open_ml
- Repositories: 56
- Profile: https://github.com/openml
Open, Networked Machine Learning
Citation (CITATION.cff)
cff-version: 1.2.0
message: "If you use this software, please cite it as below."
title: "AutoML Benchmark"
version: 2.1.7
license: "MIT"
url: "https://github.com/openml/automlbenchmark"
preferred-citation:
type: article
authors:
- family-names: "Gijsbers"
given-names: "Pieter"
orcid: "https://orcid.org/0000-0001-7346-8075"
- family-names: "de Paula Bueno"
given-names: "Marcos"
- family-names: "Coors"
given-names: "Stefan"
orcid: "https://orcid.org/0000-0001-7346-8075"
- family-names: "LeDell"
given-names: "Erin"
- family-names: "Poirier"
given-names: "Sébastien"
- family-names: "Thomas"
given-names: "Janek"
orcid: "https://orcid.org/0000-0003-4511-6245"
- family-names: "Bischl"
given-names: "Bernd"
orcid: "https://orcid.org/0000-0001-6002-6980"
- family-names: "Vanschoren"
given-names: "Joaquin"
orcid: "https://orcid.org/0000-0001-7044-9805"
journal: "Journal of Machine Learning Research"
start: 1 # First page number
end: 65 # Last page number
title: "AMLB: an AutoML Benchmark"
issue: 101
volume: 25
year: 2024
url: http://jmlr.org/papers/v25/22-0493.html
GitHub Events
Total
- Issues event: 49
- Watch event: 31
- Delete event: 30
- Issue comment event: 135
- Push event: 113
- Pull request review comment event: 23
- Pull request review event: 39
- Pull request event: 76
- Fork event: 8
- Create event: 31
Last Year
- Issues event: 49
- Watch event: 31
- Delete event: 30
- Issue comment event: 135
- Push event: 113
- Pull request review comment event: 23
- Pull request review event: 39
- Pull request event: 76
- Fork event: 8
- Create event: 31
Committers
Last synced: over 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| Sebastien Poirier | s****n@h****i | 536 |
| PGijsbers | p****s@t****l | 391 |
| Janek Thomas | j****s@w****e | 68 |
| ledell | e****n@h****i | 52 |
| Coorsaa | s****s@g****t | 14 |
| Piotrek | p****6@g****m | 11 |
| mwever | w****r@m****e | 11 |
| Joaquin Vanschoren | j****n@g****m | 11 |
| chico | f****e@g****m | 9 |
| Nick Erickson | n****k@a****m | 7 |
| Matthias Feurer | f****m@i****e | 6 |
| github-actions | g****s@g****m | 6 |
| wever | w****r@p****e | 5 |
| Eddie Bergman | e****s@g****m | 4 |
| Nick Erickson | i****a@g****m | 3 |
| Xiaoyun Zhang | b****g@g****m | 3 |
| Francisco Rivera Valverde | 4****a | 3 |
| Qingyun Wu | q****y@v****u | 2 |
| Alan Silva | 3****r | 2 |
| ja-thomas | j****s | 2 |
| Nikolay Nikitin | n****o@y****u | 1 |
| Oleksandr Shchur | o****r@g****m | 1 |
| LevineHuang | l****g@1****m | 1 |
| Nandini Nayar | n****9@c****u | 1 |
| a-hanf | a****f | 1 |
| TrellixVulnTeam | 1****m | 1 |
| Weisu Yin | w****y@a****m | 1 |
| Oleksandr Shchur | s****o@a****m | 1 |
| Robinnibor | r****s@g****m | 1 |
| dev-rinchin | 5****n | 1 |
| and 1 more... | ||
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 127
- Total pull requests: 179
- Average time to close issues: about 1 year
- Average time to close pull requests: about 2 months
- Total issue authors: 38
- Total pull request authors: 26
- Average comments per issue: 2.77
- Average comments per pull request: 1.66
- Merged pull requests: 134
- Bot issues: 0
- Bot pull requests: 16
Past Year
- Issues: 30
- Pull requests: 63
- Average time to close issues: about 1 month
- Average time to close pull requests: 12 days
- Issue authors: 10
- Pull request authors: 7
- Average comments per issue: 1.87
- Average comments per pull request: 1.75
- Merged pull requests: 46
- Bot issues: 0
- Bot pull requests: 16
Top Authors
Issue Authors
- PGijsbers (50)
- Innixma (13)
- sebhrusen (9)
- sedol1339 (6)
- alanwilter (5)
- eddiebergman (4)
- cynthiamaia (3)
- mfeurer (2)
- israel-cj (2)
- annawiewer (2)
- RamlatchxRamspeicher (2)
- juliocartier (1)
- thenol (1)
- dev-rinchin (1)
- Robinnibor (1)
Pull Request Authors
- PGijsbers (119)
- Innixma (23)
- pre-commit-ci[bot] (14)
- sebhrusen (10)
- SubhadityaMukherjee (5)
- limpbot (4)
- eddiebergman (3)
- adibiasio (2)
- shchur (2)
- alanwilter (2)
- Lopa10ko (2)
- dmitryglhf (2)
- ja-thomas (2)
- kimusaku (2)
- coderabbitai[bot] (2)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- pypi 30 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 1
- Total maintainers: 1
pypi.org: amlb
Benchmarking for AutoML frameworks
- Homepage: https://github.com/openml/automlbenchmark
- Documentation: https://amlb.readthedocs.io/
- License: mit
-
Latest release: 0.0.1
published over 2 years ago
Rankings
Maintainers (1)
Dependencies
- scikit-learn ==0.22.1
- packaging *
- colorama >=0.3.8
- future *
- packaging *
- pandas *
- requests >=2.10
- tabulate *
- liac-arff ==2.4
- numpy >=1.15,<2.0
- pandas >=0.23,<1.0
- ruamel.yaml >=0.15,<1.0
- scikit-learn >=0.22.2
- scipy >=1.5,<1.6
- setuptools *
- torch >=1.6.0,<1.7.0
- tpot >=0.11.0,<0.12
- xgboost >=1.1.0,<1.2
- pandas *
- stopit ==1.1.2
- openml *
- packaging *
- scipy >=0.14.1,<1.7.0
- rpy2 ==2.3.0
- rpy2 ==2.3.0
- cvxpy >=1.0,<2.0
- mkl >=1.0.0
- multiprocess >=0.70.5
- numpy ==1.16.4
- openml ==0.10.2
- pandas ==0.24.2
- scikit-learn ==0.22.1
- scipy ==1.4.1
- tensorly *
- rpy2 ==2.3.0
- psutil >=5.4
- pyarrow >=4.0
- ruamel.yaml >=0.15
- numpy ==1.21.0
- psutil ==5.8.0
- pyarrow ==4.0.1
- ruamel.yaml ==0.17.4
- ruamel.yaml.clib ==0.2.2
- pip-tools *
- pytest *
- pytest-mock *
- matplotlib *
- numpy *
- openml *
- pandas *
- seaborn *
- tabulate *
- boto3 >=1.9,<2.0
- liac-arff >=2.5,<3.0
- numpy >=1.20,<2.0
- openml ==0.12.2
- pandas >=1.2.4,<2.0
- psutil >=5.4,<6.0
- pyarrow >=4.0
- ruamel.yaml >=0.15,<1.0
- scikit-learn >=0.24
- tables >=3.6
- boto3 ==1.17.74
- botocore ==1.20.74
- certifi ==2020.12.5
- chardet ==4.0.0
- idna ==2.10
- jmespath ==0.10.0
- joblib ==1.0.1
- liac-arff ==2.5.0
- minio ==7.0.3
- numexpr ==2.7.3
- numpy ==1.20.3
- openml ==0.12.2
- pandas ==1.2.4
- psutil ==5.8.0
- pyarrow ==4.0.0
- python-dateutil ==2.8.1
- pytz ==2021.1
- requests ==2.25.1
- ruamel.yaml ==0.17.4
- ruamel.yaml.clib ==0.2.2
- s3transfer ==0.4.2
- scikit-learn ==0.24.2
- scipy ==1.6.3
- six ==1.16.0
- tables ==3.6.1
- threadpoolctl ==2.1.0
- urllib3 ==1.26.4
- xmltodict ==0.12.0
- actions/cache v2 composite
- actions/checkout v2 composite
- actions/setup-python v2 composite
- actions/checkout v3 composite
- actions/checkout v3 composite
- actions/github-script v6 composite
- author/action-rollback stable composite