amlb

OpenML AutoML Benchmarking Framework

https://github.com/openml/automlbenchmark

Science Score: 64.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org
  • Committers with academic emails
    7 of 31 committers (22.6%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (11.5%) to scientific vocabulary

Keywords

automl benchmark machine-learning

Keywords from Contributors

meta-learning tabular-data benchmarking datascience openml huggingface
Last synced: 6 months ago · JSON representation ·

Repository

OpenML AutoML Benchmarking Framework

Basic Info
Statistics
  • Stars: 432
  • Watchers: 15
  • Forks: 138
  • Open Issues: 117
  • Releases: 14
Topics
automl benchmark machine-learning
Created over 7 years ago · Last pushed 6 months ago
Metadata Files
Readme Contributing License Citation

docs/readme.md

AutoML Benchmark

The OpenML AutoML Benchmark provides a framework for evaluating and comparing open-source AutoML systems. The system is extensible because you can add your own AutoML frameworks and datasets. For a thorough explanation of the benchmark, and evaluation of results, you can read our paper.

Automatic Machine Learning (AutoML) systems automatically build machine learning pipelines or neural architectures in a data-driven, objective, and automatic way. They automate a lot of drudge work in designing machine learning systems, so that better systems can be developed, faster. However, AutoML research is also slowed down by two factors:

  • We currently lack standardized, easily-accessible benchmarking suites of tasks (datasets) that are curated to reflect important problem domains, practical to use, and sufficiently challenging to support a rigorous analysis of performance results.

  • Subtle differences in the problem definition, such as the design of the hyperparameter search space or the way time budgets are defined, can drastically alter a task’s difficulty. This issue makes it difficult to reproduce published research and compare results from different papers.

This toolkit aims to address these problems by setting up standardized environments for in-depth experimentation with a wide range of AutoML systems.

Website: https://openml.github.io/automlbenchmark/index.html

Documentation: https://openml.github.io/automlbenchmark/docs/index.html

Installation: https://openml.github.io/automlbenchmark/docs/getting_started/

Features:

Owner

  • Name: OpenML
  • Login: openml
  • Kind: organization
  • Email: openmlhq@googlegroups.com
  • Location: The Future

Open, Networked Machine Learning

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
title: "AutoML Benchmark"
version: 2.1.7
license: "MIT"
url: "https://github.com/openml/automlbenchmark"
preferred-citation:
  type: article
  authors:
  - family-names: "Gijsbers"
    given-names: "Pieter"
    orcid: "https://orcid.org/0000-0001-7346-8075"
  - family-names: "de Paula Bueno"
    given-names: "Marcos"
  - family-names: "Coors"
    given-names: "Stefan"
    orcid: "https://orcid.org/0000-0001-7346-8075"
  - family-names: "LeDell"
    given-names: "Erin"
  - family-names: "Poirier"
    given-names: "Sébastien"
  - family-names: "Thomas"
    given-names: "Janek"
    orcid: "https://orcid.org/0000-0003-4511-6245"
  - family-names: "Bischl"
    given-names: "Bernd"
    orcid: "https://orcid.org/0000-0001-6002-6980"
  - family-names: "Vanschoren"
    given-names: "Joaquin"
    orcid: "https://orcid.org/0000-0001-7044-9805"
  journal: "Journal of Machine Learning Research"
  start: 1 # First page number
  end: 65 # Last page number
  title: "AMLB: an AutoML Benchmark"
  issue: 101
  volume: 25
  year: 2024
  url: http://jmlr.org/papers/v25/22-0493.html

GitHub Events

Total
  • Issues event: 49
  • Watch event: 31
  • Delete event: 30
  • Issue comment event: 135
  • Push event: 113
  • Pull request review comment event: 23
  • Pull request review event: 39
  • Pull request event: 76
  • Fork event: 8
  • Create event: 31
Last Year
  • Issues event: 49
  • Watch event: 31
  • Delete event: 30
  • Issue comment event: 135
  • Push event: 113
  • Pull request review comment event: 23
  • Pull request review event: 39
  • Pull request event: 76
  • Fork event: 8
  • Create event: 31

Committers

Last synced: over 2 years ago

All Time
  • Total Commits: 1,157
  • Total Committers: 31
  • Avg Commits per committer: 37.323
  • Development Distribution Score (DDS): 0.537
Past Year
  • Commits: 43
  • Committers: 8
  • Avg Commits per committer: 5.375
  • Development Distribution Score (DDS): 0.209
Top Committers
Name Email Commits
Sebastien Poirier s****n@h****i 536
PGijsbers p****s@t****l 391
Janek Thomas j****s@w****e 68
ledell e****n@h****i 52
Coorsaa s****s@g****t 14
Piotrek p****6@g****m 11
mwever w****r@m****e 11
Joaquin Vanschoren j****n@g****m 11
chico f****e@g****m 9
Nick Erickson n****k@a****m 7
Matthias Feurer f****m@i****e 6
github-actions g****s@g****m 6
wever w****r@p****e 5
Eddie Bergman e****s@g****m 4
Nick Erickson i****a@g****m 3
Xiaoyun Zhang b****g@g****m 3
Francisco Rivera Valverde 4****a 3
Qingyun Wu q****y@v****u 2
Alan Silva 3****r 2
ja-thomas j****s 2
Nikolay Nikitin n****o@y****u 1
Oleksandr Shchur o****r@g****m 1
LevineHuang l****g@1****m 1
Nandini Nayar n****9@c****u 1
a-hanf a****f 1
TrellixVulnTeam 1****m 1
Weisu Yin w****y@a****m 1
Oleksandr Shchur s****o@a****m 1
Robinnibor r****s@g****m 1
dev-rinchin 5****n 1
and 1 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 127
  • Total pull requests: 179
  • Average time to close issues: about 1 year
  • Average time to close pull requests: about 2 months
  • Total issue authors: 38
  • Total pull request authors: 26
  • Average comments per issue: 2.77
  • Average comments per pull request: 1.66
  • Merged pull requests: 134
  • Bot issues: 0
  • Bot pull requests: 16
Past Year
  • Issues: 30
  • Pull requests: 63
  • Average time to close issues: about 1 month
  • Average time to close pull requests: 12 days
  • Issue authors: 10
  • Pull request authors: 7
  • Average comments per issue: 1.87
  • Average comments per pull request: 1.75
  • Merged pull requests: 46
  • Bot issues: 0
  • Bot pull requests: 16
Top Authors
Issue Authors
  • PGijsbers (50)
  • Innixma (13)
  • sebhrusen (9)
  • sedol1339 (6)
  • alanwilter (5)
  • eddiebergman (4)
  • cynthiamaia (3)
  • mfeurer (2)
  • israel-cj (2)
  • annawiewer (2)
  • RamlatchxRamspeicher (2)
  • juliocartier (1)
  • thenol (1)
  • dev-rinchin (1)
  • Robinnibor (1)
Pull Request Authors
  • PGijsbers (119)
  • Innixma (23)
  • pre-commit-ci[bot] (14)
  • sebhrusen (10)
  • SubhadityaMukherjee (5)
  • limpbot (4)
  • eddiebergman (3)
  • adibiasio (2)
  • shchur (2)
  • alanwilter (2)
  • Lopa10ko (2)
  • dmitryglhf (2)
  • ja-thomas (2)
  • kimusaku (2)
  • coderabbitai[bot] (2)
Top Labels
Issue Labels
enhancement (25) framework (13) bug (13) question (8) Documentation (7) automation (6) aws (6) quality (5) container (3) data (3) openml (2) dependencies (2) framework add (2) Benchmark Design (2) Answered (1) good first issue (1) website (1) change (1) external (1) data add (1)
Pull Request Labels
automation (13) Documentation (12) framework (12) enhancement (11) quality (9) bug (8) WIP (5) framework add (3) website (2) needs reviewer (2) aws (2) Benchmark Design (2) tests (2) external (1) dependencies (1) help wanted (1)

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 30 last-month
  • Total dependent packages: 0
  • Total dependent repositories: 0
  • Total versions: 1
  • Total maintainers: 1
pypi.org: amlb

Benchmarking for AutoML frameworks

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 30 Last month
Rankings
Stargazers count: 3.5%
Forks count: 4.4%
Dependent packages count: 7.6%
Average: 21.2%
Dependent repos count: 69.5%
Maintainers (1)
Last synced: 6 months ago

Dependencies

examples/custom/extensions/Stacking/requirements.txt pypi
  • scikit-learn ==0.22.1
frameworks/GAMA/requirements.txt pypi
  • packaging *
frameworks/H2OAutoML/requirements.txt pypi
  • colorama >=0.3.8
  • future *
  • packaging *
  • pandas *
  • requests >=2.10
  • tabulate *
frameworks/MLPlan/requirements.txt pypi
  • liac-arff ==2.4
  • numpy >=1.15,<2.0
  • pandas >=0.23,<1.0
  • ruamel.yaml >=0.15,<1.0
  • scikit-learn >=0.22.2
  • scipy >=1.5,<1.6
  • setuptools *
  • torch >=1.6.0,<1.7.0
  • tpot >=0.11.0,<0.12
  • xgboost >=1.1.0,<1.2
frameworks/RandomForest/requirements.txt pypi
  • pandas *
frameworks/TunedRandomForest/requirements.txt pypi
  • stopit ==1.1.2
frameworks/autosklearn/requirements.txt pypi
  • openml *
  • packaging *
  • scipy >=0.14.1,<1.7.0
frameworks/autoxgboost/requirements.txt pypi
  • rpy2 ==2.3.0
frameworks/mlr3automl/requirements.txt pypi
  • rpy2 ==2.3.0
frameworks/oboe/requirements.txt pypi
  • cvxpy >=1.0,<2.0
  • mkl >=1.0.0
  • multiprocess >=0.70.5
  • numpy ==1.16.4
  • openml ==0.10.2
  • pandas ==0.24.2
  • scikit-learn ==0.22.1
  • scipy ==1.4.1
  • tensorly *
frameworks/ranger/requirements.txt pypi
  • rpy2 ==2.3.0
frameworks/shared/requirements.in pypi
  • psutil >=5.4
  • pyarrow >=4.0
  • ruamel.yaml >=0.15
frameworks/shared/requirements.txt pypi
  • numpy ==1.21.0
  • psutil ==5.8.0
  • pyarrow ==4.0.1
  • ruamel.yaml ==0.17.4
  • ruamel.yaml.clib ==0.2.2
requirements-dev.txt pypi
  • pip-tools *
  • pytest *
  • pytest-mock *
requirements-report.txt pypi
  • matplotlib *
  • numpy *
  • openml *
  • pandas *
  • seaborn *
  • tabulate *
requirements.in pypi
  • boto3 >=1.9,<2.0
  • liac-arff >=2.5,<3.0
  • numpy >=1.20,<2.0
  • openml ==0.12.2
  • pandas >=1.2.4,<2.0
  • psutil >=5.4,<6.0
  • pyarrow >=4.0
  • ruamel.yaml >=0.15,<1.0
  • scikit-learn >=0.24
  • tables >=3.6
requirements.txt pypi
  • boto3 ==1.17.74
  • botocore ==1.20.74
  • certifi ==2020.12.5
  • chardet ==4.0.0
  • idna ==2.10
  • jmespath ==0.10.0
  • joblib ==1.0.1
  • liac-arff ==2.5.0
  • minio ==7.0.3
  • numexpr ==2.7.3
  • numpy ==1.20.3
  • openml ==0.12.2
  • pandas ==1.2.4
  • psutil ==5.8.0
  • pyarrow ==4.0.0
  • python-dateutil ==2.8.1
  • pytz ==2021.1
  • requests ==2.25.1
  • ruamel.yaml ==0.17.4
  • ruamel.yaml.clib ==0.2.2
  • s3transfer ==0.4.2
  • scikit-learn ==0.24.2
  • scipy ==1.6.3
  • six ==1.16.0
  • tables ==3.6.1
  • threadpoolctl ==2.1.0
  • urllib3 ==1.26.4
  • xmltodict ==0.12.0
.github/workflows/run_all_frameworks.yml actions
  • actions/cache v2 composite
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
.github/workflows/versioning-reset.yml actions
  • actions/checkout v3 composite
.github/workflows/versioning.yml actions
  • actions/checkout v3 composite
  • actions/github-script v6 composite
  • author/action-rollback stable composite