jax

Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

https://github.com/jax-ml/jax

Science Score: 54.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
    40 of 820 committers (4.9%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (13.6%) to scientific vocabulary

Keywords

jax

Keywords from Contributors

cryptocurrencies astronomy flux the-human-brain closember bayesian-inference astropy tensors physics sunpy

Scientific Fields

Artificial Intelligence and Machine Learning Computer Science - 64% confidence
Last synced: 4 months ago · JSON representation ·

Repository

Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

Basic Info
  • Host: GitHub
  • Owner: jax-ml
  • License: apache-2.0
  • Language: Python
  • Default Branch: main
  • Homepage: https://docs.jax.dev
  • Size: 127 MB
Statistics
  • Stars: 33,339
  • Watchers: 327
  • Forks: 3,146
  • Open Issues: 2,274
  • Releases: 126
Topics
jax
Created about 7 years ago · Last pushed 4 months ago
Metadata Files
Readme Changelog Contributing License Citation Authors

README.md

logo

Transformable numerical computing at scale

Continuous integration PyPI version

Transformations | Scaling | Install guide | Change logs | Reference docs

What is JAX?

JAX is a Python library for accelerator-oriented array computation and program transformation, designed for high-performance numerical computing and large-scale machine learning.

JAX can automatically differentiate native Python and NumPy functions. It can differentiate through loops, branches, recursion, and closures, and it can take derivatives of derivatives of derivatives. It supports reverse-mode differentiation (a.k.a. backpropagation) via jax.grad as well as forward-mode differentiation, and the two can be composed arbitrarily to any order.

JAX uses XLA to compile and scale your NumPy programs on TPUs, GPUs, and other hardware accelerators. You can compile your own pure functions with jax.jit. Compilation and automatic differentiation can be composed arbitrarily.

Dig a little deeper, and you'll see that JAX is really an extensible system for composable function transformations at scale.

This is a research project, not an official Google product. Expect sharp edges. Please help by trying it out, reporting bugs, and letting us know what you think!

```python import jax import jax.numpy as jnp

def predict(params, inputs): for W, b in params: outputs = jnp.dot(inputs, W) + b inputs = jnp.tanh(outputs) # inputs to the next layer return outputs # no activation on last layer

def loss(params, inputs, targets): preds = predict(params, inputs) return jnp.sum((preds - targets)**2)

gradloss = jax.jit(jax.grad(loss)) # compiled gradient evaluation function perexgrads = jax.jit(jax.vmap(gradloss, inaxes=(None, 0, 0))) # fast per-example grads ```

Contents

Transformations

At its core, JAX is an extensible system for transforming numerical functions. Here are three: jax.grad, jax.jit, and jax.vmap.

Automatic differentiation with grad

Use jax.grad to efficiently compute reverse-mode gradients:

```python import jax import jax.numpy as jnp

def tanh(x): y = jnp.exp(-2.0 * x) return (1.0 - y) / (1.0 + y)

gradtanh = jax.grad(tanh) print(gradtanh(1.0))

prints 0.4199743

```

You can differentiate to any order with grad:

```python print(jax.grad(jax.grad(jax.grad(tanh)))(1.0))

prints 0.62162673

```

You're free to use differentiation with Python control flow:

```python def abs_val(x): if x > 0: return x else: return -x

absvalgrad = jax.grad(absval) print(absvalgrad(1.0)) # prints 1.0 print(absvalgrad(-1.0)) # prints -1.0 (absval is re-evaluated) ```

See the JAX Autodiff Cookbook and the reference docs on automatic differentiation for more.

Compilation with jit

Use XLA to compile your functions end-to-end with jit, used either as an @jit decorator or as a higher-order function.

```python import jax import jax.numpy as jnp

def slow_f(x): # Element-wise ops see a large benefit from fusion return x * x + x * 2.0

x = jnp.ones((5000, 5000)) fastf = jax.jit(slowf) %timeit -n10 -r3 fastf(x) %timeit -n10 -r3 slowf(x) ```

Using jax.jit constrains the kind of Python control flow the function can use; see the tutorial on Control Flow and Logical Operators with JIT for more.

Auto-vectorization with vmap

vmap maps a function along array axes. But instead of just looping over function applications, it pushes the loop down onto the function’s primitive operations, e.g. turning matrix-vector multiplies into matrix-matrix multiplies for better performance.

Using vmap can save you from having to carry around batch dimensions in your code:

```python import jax import jax.numpy as jnp

def l1_distance(x, y): assert x.ndim == y.ndim == 1 # only works on 1D inputs return jnp.sum(jnp.abs(x - y))

def pairwise_distances(dist1D, xs): return jax.vmap(jax.vmap(dist1D, (0, None)), (None, 0))(xs, xs)

xs = jax.random.normal(jax.random.key(0), (100, 3)) dists = pairwisedistances(l1distance, xs) dists.shape # (100, 100) ```

By composing jax.vmap with jax.grad and jax.jit, we can get efficient Jacobian matrices, or per-example gradients:

python per_example_grads = jax.jit(jax.vmap(jax.grad(loss), in_axes=(None, 0, 0)))

Scaling

To scale your computations across thousands of devices, you can use any composition of these: * Compiler-based automatic parallelization where you program as if using a single global machine, and the compiler chooses how to shard data and partition computation (with some user-provided constraints); * Explicit sharding and automatic partitioning where you still have a global view but data shardings are explicit in JAX types, inspectable using jax.typeof; * Manual per-device programming where you have a per-device view of data and computation, and can communicate with explicit collectives.

| Mode | View? | Explicit sharding? | Explicit Collectives? | |---|---|---|---| | Auto | Global | ❌ | ❌ | | Explicit | Global | ✅ | ❌ | | Manual | Per-device | ✅ | ✅ |

```python from jax.sharding import setmesh, AxisType, PartitionSpec as P mesh = jax.makemesh((8,), ('data',), axistypes=(AxisType.Explicit,)) setmesh(mesh)

parameters are sharded for FSDP:

for W, b in params: print(f'{jax.typeof(W)}') # f32[512@data,512] print(f'{jax.typeof(b)}') # f32[512]

shard data for batch parallelism:

inputs, targets = jax.device_put((inputs, targets), P('data'))

evaluate gradients, automatically parallelized!

gradfun = jax.jit(jax.grad(loss)) param_grads = gradfun(params, (inputs, targets)) ```

See the tutorial and advanced guides for more.

Gotchas and sharp bits

See the Gotchas Notebook.

Installation

Supported platforms

| | Linux x8664 | Linux aarch64 | Mac aarch64 | Windows x8664 | Windows WSL2 x86_64 | |------------|--------------|---------------|--------------|----------------|---------------------| | CPU | yes | yes | yes | yes | yes | | NVIDIA GPU | yes | yes | n/a | no | experimental | | Google TPU | yes | n/a | n/a | n/a | n/a | | AMD GPU | yes | no | n/a | no | no | | Apple GPU | n/a | no | experimental | n/a | n/a | | Intel GPU | experimental | n/a | n/a | no | no |

Instructions

| Platform | Instructions | |-----------------|-----------------------------------------------------------------------------------------------------------------| | CPU | pip install -U jax | | NVIDIA GPU | pip install -U "jax[cuda12]" | | Google TPU | pip install -U "jax[tpu]" | | AMD GPU (Linux) | Follow AMD's instructions. | | Mac GPU | Follow Apple's instructions. | | Intel GPU | Follow Intel's instructions. |

See the documentation for information on alternative installation strategies. These include compiling from source, installing with Docker, using other versions of CUDA, a community-supported conda build, and answers to some frequently-asked questions.

Citing JAX

To cite this repository:

@software{jax2018github, author = {James Bradbury and Roy Frostig and Peter Hawkins and Matthew James Johnson and Chris Leary and Dougal Maclaurin and George Necula and Adam Paszke and Jake Vander{P}las and Skye Wanderman-{M}ilne and Qiao Zhang}, title = {{JAX}: composable transformations of {P}ython+{N}um{P}y programs}, url = {http://github.com/jax-ml/jax}, version = {0.3.13}, year = {2018}, }

In the above bibtex entry, names are in alphabetical order, the version number is intended to be that from jax/version.py, and the year corresponds to the project's open-source release.

A nascent version of JAX, supporting only automatic differentiation and compilation to XLA, was described in a paper that appeared at SysML 2018. We're currently working on covering JAX's ideas and capabilities in a more comprehensive and up-to-date paper.

Reference documentation

For details about the JAX API, see the reference documentation.

For getting started as a JAX developer, see the developer documentation.

Owner

  • Name: jax-ml
  • Login: jax-ml
  • Kind: organization

miscellaneous libraries and projects relating to JAX

Citation (CITATION.bib)

@software{jax2018github,
  author = {James Bradbury and Roy Frostig and Peter Hawkins and Matthew James Johnson and Chris Leary and Dougal Maclaurin and George Necula and Adam Paszke and Jake Vander{P}las and Skye Wanderman-{M}ilne and Qiao Zhang},
  title = {{JAX}: composable transformations of {P}ython+{N}um{P}y programs},
  url = {http://github.com/jax-ml/jax},
  version = {0.3.13},
  year = {2018},
}

Committers

Last synced: 8 months ago

All Time
  • Total Commits: 19,841
  • Total Committers: 820
  • Avg Commits per committer: 24.196
  • Development Distribution Score (DDS): 0.865
Past Year
  • Commits: 5,393
  • Committers: 292
  • Avg Commits per committer: 18.469
  • Development Distribution Score (DDS): 0.863
Top Committers
Name Email Commits
Peter Hawkins p****s@g****m 2,674
Jake VanderPlas j****p@g****m 2,334
Matthew Johnson m****j@g****m 2,069
Yash Katariya y****a@g****m 1,502
George Necula g****a@g****m 1,113
jax authors g****n@g****m 737
jax authors n****y@g****m 697
Roy Frostig f****g@g****m 614
Adam Paszke a****e@g****m 610
Skye Wanderman-Milne s****m@g****m 495
Sergei Lebedev s****v@g****m 464
Sharad Vikram s****v@g****m 351
Dan Foreman-Mackey d****m@g****m 254
Parker Schuh p****s@g****m 170
Jake VanderPlas v****s@g****m 170
Benjamin Chetioui c****n@g****m 161
Stephan Hoyer s****r@g****m 145
Tomás Longeri t****i@g****m 143
Jevin Jiang j****g@g****m 128
rajasekharporeddy r****p@g****m 112
Chris Jones c****j@g****m 112
Lena Martens l****s@g****m 107
Justin Fu j****u@g****m 105
Nitin Srinivasan s****n@g****m 98
Qiao Zhang z****c@g****m 96
James Bradbury j****y@g****m 95
Jean-Baptiste Lespiau j****u@g****m 88
Ayaka a****x@g****m 87
Dougal Maclaurin d****m@g****m 87
Jieying Luo j****g@g****m 84
and 790 more...

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 1,147
  • Total pull requests: 9,130
  • Average time to close issues: 9 months
  • Average time to close pull requests: 9 days
  • Total issue authors: 633
  • Total pull request authors: 242
  • Average comments per issue: 2.55
  • Average comments per pull request: 0.23
  • Merged pull requests: 5,279
  • Bot issues: 46
  • Bot pull requests: 6,558
Past Year
  • Issues: 905
  • Pull requests: 9,005
  • Average time to close issues: 12 days
  • Average time to close pull requests: 4 days
  • Issue authors: 501
  • Pull request authors: 227
  • Average comments per issue: 1.29
  • Average comments per pull request: 0.21
  • Merged pull requests: 5,249
  • Bot issues: 46
  • Bot pull requests: 6,496
Top Authors
Issue Authors
  • carlosgmartin (42)
  • PhilipVinc (36)
  • copybara-service[bot] (26)
  • ayaka14732 (24)
  • jakevdp (20)
  • github-actions[bot] (18)
  • patrick-kidger (16)
  • apiqwe (14)
  • hawkinsp (13)
  • gnecula (13)
  • sbodenstein (13)
  • vfdev-5 (12)
  • crusaderky (11)
  • emilyfertig (10)
  • mattjj (10)
Pull Request Authors
  • copybara-service[bot] (6,446)
  • jakevdp (538)
  • mattjj (197)
  • hawkinsp (183)
  • dfm (179)
  • gnecula (159)
  • dependabot[bot] (112)
  • vfdev-5 (66)
  • carlosgmartin (61)
  • rajasekharporeddy (50)
  • Ruturaj4 (47)
  • dougalm (39)
  • andportnoy (38)
  • MichaelHudgins (32)
  • froystig (29)
Top Labels
Issue Labels
bug (736) enhancement (258) documentation (27) question (25) pallas (24) NVIDIA GPU (22) P3 (no schedule) (13) P2 (eventual) (13) free threading (12) pull ready (11) build failed (10) performance (8) contributions welcome (8) CI (8) XLA (6) needs info (6) Apple GPU (Metal) plugin (6) better_errors (6) cleanup (4) P1 (soon) (4) CPU (4) open (4) good first issue (3) type:performance (2) application (2) AMD GPU (2) dependencies (2) python (2) JEP (1) skill issue (1)
Pull Request Labels
pull ready (1,818) kokoro:force-run (605) documentation (166) dependencies (112) python (77) CI Optional GPU Presubmit (46) github_actions (35) CI Connection Halt - On Retry (20) better_errors (14) windows:force-run (8) cla: yes (7) needs info (4) free threading (4) bug (3) skill issue (3) CI (3) enhancement (3) AMD GPU (2) CI Connection Halt - Always (2) NVIDIA GPU (2) pallas (2) CI Connection Halt - On Error (1) build (1) Apple GPU (Metal) plugin (1) question (1)

Dependencies

.github/workflows/ci-build.yaml actions
  • actions/cache 704facf57e6136b1bc63b828d79edcd491f0ee84 composite
  • actions/checkout b4ffde65f46336ab88eb53be808477a3936bae11 composite
  • actions/setup-python 0a5c61591373683505ea898e09a3ea4f39ef2b9c composite
  • pre-commit/action 646c83fcd040023954eafda54b4db0192ce70507 composite
  • styfle/cancel-workflow-action 01ce38bf961b4e243a6342cbade0dbc8ba3f0432 composite
.github/workflows/cloud-tpu-ci-nightly.yml actions
  • actions/checkout b4ffde65f46336ab88eb53be808477a3936bae11 composite
.github/workflows/jax-array-api.yml actions
  • actions/checkout b4ffde65f46336ab88eb53be808477a3936bae11 composite
  • actions/setup-python 0a5c61591373683505ea898e09a3ea4f39ef2b9c composite
.github/workflows/release-notification.yml actions
.github/workflows/wheel_win_x64.yml actions
  • actions/checkout b4ffde65f46336ab88eb53be808477a3936bae11 composite
  • actions/setup-python 0a5c61591373683505ea898e09a3ea4f39ef2b9c composite
  • actions/upload-artifact a8a3f3ad30e3422c9c7b888a15615d19a852ae32 composite
  • styfle/cancel-workflow-action 01ce38bf961b4e243a6342cbade0dbc8ba3f0432 composite
.github/workflows/windows_ci.yml actions
  • actions/checkout b4ffde65f46336ab88eb53be808477a3936bae11 composite
  • actions/setup-python 0a5c61591373683505ea898e09a3ea4f39ef2b9c composite
  • actions/upload-artifact a8a3f3ad30e3422c9c7b888a15615d19a852ae32 composite
  • styfle/cancel-workflow-action 01ce38bf961b4e243a6342cbade0dbc8ba3f0432 composite
build/collect-profile-requirements.txt pypi
  • protobuf *
  • tensorboard-plugin-profile *
  • tensorflow *
build/test-requirements.txt pypi
  • absl-py * test
  • build * test
  • cloudpickle * test
  • colorama >=0.4.4 test
  • flatbuffers * test
  • hypothesis * test
  • numpy >=1.22 test
  • pillow >=9.1.0 test
  • portpicker * test
  • pytest-xdist * test
  • rich * test
  • setuptools * test
  • wheel * test
docs/requirements.txt pypi
  • absl-py *
  • flatbuffers *
  • ipython >=8.8.0
  • jupyter-sphinx >=0.3.2
  • matplotlib *
  • myst-nb >=1.0.0
  • numpy *
  • pytest *
  • pytest-xdist *
  • scikit-learn *
  • sphinx >=6.0.0
  • sphinx-autodoc-typehints *
  • sphinx-book-theme >=1.0.1
  • sphinx-copybutton >=0.5.0
  • sphinx-design *
  • sphinx-remove-toctrees *
jax/experimental/jax2tf/examples/requirements.txt pypi
  • flax *
  • tensorflow_datasets *
  • tensorflow_hub *
jax_plugins/cuda/pyproject.toml pypi
jax_plugins/cuda/setup.py pypi
jaxlib/setup.py pypi
  • ml_dtypes >=0.2.0
  • numpy >=1.22
  • scipy >=1.11.1
  • scipy >=1.9
pyproject.toml pypi
setup.py pypi
  • Python *
  • Required *
  • importlib_metadata >=4.6
  • ml_dtypes >=0.2.0
  • numpy >=1.26.0
  • numpy >=1.22
  • numpy >=1.23.2
  • opt_einsum *
  • required *
  • scipy >=1.11.1
  • scipy >=1.9