tesseract-decoder

Search-based decoder for quantum error correction (QEC) written in C++ and Python.

https://github.com/quantumlib/tesseract-decoder

Science Score: 67.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 1 DOI reference(s) in README
  • Academic publication links
    Links to: arxiv.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (15.9%) to scientific vocabulary

Keywords

a-star algorithms color-code cpp google-quantum qec-codes quantum quantum-computing quantum-error-correction surface-code syndrome-decoding
Last synced: 4 months ago · JSON representation ·

Repository

Search-based decoder for quantum error correction (QEC) written in C++ and Python.

Basic Info
  • Host: GitHub
  • Owner: quantumlib
  • License: apache-2.0
  • Language: C++
  • Default Branch: main
  • Homepage:
  • Size: 2.63 MB
Statistics
  • Stars: 72
  • Watchers: 6
  • Forks: 15
  • Open Issues: 14
  • Releases: 0
Topics
a-star algorithms color-code cpp google-quantum qec-codes quantum quantum-computing quantum-error-correction surface-code syndrome-decoding
Created 10 months ago · Last pushed 4 months ago
Metadata Files
Readme Contributing License Code of conduct Citation Security Support

README.md

# [Tesseract Decoder](https://quantumlib.github.io/tesseract-decoder) A Search-Based Decoder for Quantum Error Correction. [![Licensed under the Apache 2.0 open-source license](https://img.shields.io/badge/License-Apache%202.0-3c60b1.svg?logo=opensourceinitiative\&logoColor=white\&style=flat-square)](https://github.com/quantumlib/tesseract-decoder/blob/main/LICENSE) ![C++](https://img.shields.io/badge/C++-20-fcbc2c?style=flat-square&logo=C%2B%2B&logoColor=white) [Installation](#installation) – [Usage](#usage) – [Python Interface](#python-interface) – [Paper](https://arxiv.org/pdf/2503.10988) – [Help](#help) – [Citation](#citation) – [Contact](#contact)

Tesseract is a Most Likely Error decoder designed for Low Density Parity Check (LDPC) quantum error-correcting codes. It applies pruning heuristics and manifold orientation techniques during a search over the error subsets to identify the most likely error configuration consistent with the observed syndrome. Tesseract achieves significant speed improvements over traditional integer programming-based decoders while maintaining comparable accuracy at moderate physical error rates.

We tested the Tesseract decoder for:

  • Surface codes
  • Color codes
  • Bivariate-bicycle codes
  • Transversal CNOT protocols for surface codes

Features

  • A* search: deploys A* search while running a Dijkstra algorithm with early stop for high performance.
  • Stim and DEM Support: processes Stim circuit files and Detector Error Model (DEM) files with arbitrary error models. Zero-probability error instructions are automatically removed when a DEM is loaded.
  • Parallel Decoding: uses multithreading to accelerate the decoding process, making it suitable for large-scale simulations.
  • Efficient Beam Search: implements a beam search algorithm to minimize decoding cost and enhance efficiency. Sampling and Shot Range Processing: supports sampling shots from circuits. When a detection error model is provided without an accompanying circuit, Tesseract requires detection events from files using --in. The decoder can also process specific shot ranges for flexible experiment setups.
  • Detailed Statistics: provides comprehensive statistics output, including shot counts, error counts, and processing times.
  • Heuristics: includes flexible heuristic options: --beam, --det-penalty, --beam-climbing, --no-revisit-dets, --at-most-two-errors-per-detector, and --pqlimit to improve performance while maintaining a low logical error rate. To learn more about these options, use ./bazel-bin/src/tesseract --help
  • Visualization tool: open the viz directory in your browser to view decoding results. See viz/README.md for instructions on generating the visualization JSON.

Installation

Tesseract relies on the following external libraries:

  • argparse: For command-line argument parsing.
  • nlohmann/json: For JSON handling (used for statistics output).
  • Stim: For quantum circuit simulation and error model handling.

Build Instructions

Tesseract uses Bazel as its build system. To build the decoder:

bash bazel build src:all

Running Tests

Unit tests are executed with Bazel. Run the quick test suite using: bash bazel test //src:all By default the tests use reduced parameters and finish in under 30 seconds. To run a more exhaustive suite with additional shots and larger distances, set: bash TESSERACT_LONG_TESTS=1 bazel test //src:all

Usage

The file tesseract_main.cc provides the main entry point for Tesseract Decoder. It can decode error events from Stim circuits, DEM files, and pre-existing detection event files.

Basic Usage:

bash ./tesseract --circuit CIRCUIT_FILE.stim --sample-num-shots N --print-stats

To decode pre-generated detection events, provide the input file using --in SHOTS_FILE --in-format FORMAT.

Example with Advanced Options:

bash ./tesseract \ --pqlimit 1000000 \ --at-most-two-errors-per-detector \ --det-order-seed 232852747 \ --circuit circuit_file.stim \ --sample-seed 232856747 \ --sample-num-shots 10000 \ --threads 32 \ --print-stats \ --beam 23 \ --num-det-orders 1 \ --shot-range-begin 582 \ --shot-range-end 583

Example Usage

Sampling Shots from a Circuit:

bash ./tesseract --circuit surface_code.stim --sample-num-shots 1000 --out predictions.01 --out-format 01

Using a Detection Event File:

bash ./tesseract --in events.01 --in-format 01 --dem surface_code.dem --out decoded.txt

Using a Detection Event File and Observable Flips:

bash ./tesseract --in events.01 --in-format 01 --obs_in obs.01 --obs-in-format 01 --dem surface_code.dem --out decoded.txt

Tesseract supports reading and writing from all of Stim's standard output formats.

Performance Optimization

Here are some tips for improving performance:

  • Parallelism over shots: increase --threads to leverage multicore processors for faster decoding.
  • Beam Search: use --beam to control the trade-off between accuracy and speed. Smaller beam sizes result in faster decoding but potentially lower accuracy.
  • Beam Climbing: enable --beam-climbing for enhanced cost-based decoding.
  • At most two errors per detector: enable --at-most-two-errors-per-detector to improve performance.
  • Priority Queue limit: use --pqlimit to limit the size of the priority queue.

Output Formats

  • Observable flips output: predictions of logical errors.
  • DEM usage frequency output: if --dem-out is specified, outputs estimated error frequencies.
  • Statistics output: includes number of shots, errors, low confidence shots, and processing time.

Python Interface

Full Python wrapper documentation

This repository contains the C++ implementation of the Tesseract quantum error correction decoder, along with a Python wrapper. The Python wrapper/interface exposes the decoding algorithms and helper utilities, allowing Python users to leverage this high-performance decoding algorithm.

The following example demonstrates how to create and use the Tesseract decoder using the Python interface.

```python from tesseract_decoder import tesseract import stim import numpy as np

1. Define a detector error model (DEM)

dem = stim.DetectorErrorModel(""" error(0.1) D0 D1 L0 error(0.2) D1 D2 L1 detector(0, 0, 0) D0 detector(1, 0, 0) D1 detector(2, 0, 0) D2 """)

2. Create the decoder configuration

config = tesseract.TesseractConfig(dem=dem, det_beam=50)

3. Create a decoder instance

decoder = config.compile_decoder()

4. Simulate detector outcomes

syndrome = np.array([0, 1, 1], dtype=bool)

5a. Decode to observables

flippedobservables = decoder.decode(syndrome) print(f"Flipped observables: {flippedobservables}")

5b. Alternatively, decode to errors

decoder.decodetoerrors(syndrome) predictederrors = decoder.predictederrors_buffer

Indices of predicted errors

print(f"Predicted errors indices: {predicted_errors}")

Print properties of predicted errors

for i in predicted_errors: print(f" {i}: {decoder.errors[i]}") ```

Help

We are committed to providing a friendly, safe, and welcoming environment for all. Please read and respect our Code of Conduct.

Citation

When publishing articles or otherwise writing about Tesseract Decoder, please cite the following:

latex @misc{beni2025tesseractdecoder, title={Tesseract: A Search-Based Decoder for Quantum Error Correction}, author = {Aghababaie Beni, Laleh and Higgott, Oscar and Shutty, Noah}, year={2025}, eprint={2503.10988}, archivePrefix={arXiv}, primaryClass={quant-ph}, doi = {10.48550/arXiv.2503.10988}, url={https://arxiv.org/abs/2503.10988}, }

Contact

For any questions or concerns not addressed here, please email tesseract-decoder-dev@google.com.

Disclaimer

Tesseract Decoder is not an officially supported Google product. This project is not eligible for the Google Open Source Software Vulnerability Rewards Program.

Copyright 2025 Google LLC.

Google Quantum AI

Owner

  • Name: quantumlib
  • Login: quantumlib
  • Kind: organization

Google's open source code library for the quantum world

Citation (CITATION.cff)

# Citation information for this repository.                         -*- yaml -*-
#
# CITATION.cff provide human- & machine-readable citation info for software and
# datasets. GitHub, Zenodo, and the Zotero browser plugin all use CFF files
# automatically. Tools exist to generate CITATION.cff files from other formats
# such as BibTeX. For more info, visit https://citation-file-format.github.io/.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

cff-version: 1.2.0
message: >-
  Please cite your use of Tesseract Decoder using the reference metadata
  provided here.

# If preferred-citation is present, GitHub uses its value for the "cite this
# repository" button and ignores the rest of this file; conversely, the Zenodo-
# GitHub integration ignores this field when archiving a new software release
# and uses the metadata in the rest of this file.
preferred-citation:
  type: generic
  authors: &authors
    - family-names: Aghababaie Beni
      given-names: Laleh
      affiliation: Google LLC
    - family-names: Higgott
      given-names: Oscar
      affiliation: Google LLC
    - family-names: Shutty
      given-names: Noah
      affiliation: Google LLC
  title: 'Tesseract: A Search-Based Decoder for Quantum Error Correction'
  year: 2025
  date-published: 2025-01-01
  doi: 10.48550/arXiv.2503.10988
  url: https://arxiv.org/abs/2503.10988

# The remaining metadata in this file describes the current software release.

title: Tesseract Decoder
authors: *authors
abstract: A Search-Based Decoder for Quantum Error Correction.
date-released: 2025-03-12
url: https://github.com/quantumlib/tesseract-decoder
repository-code: https://github.com/quantumlib/tesseract-decoder
license: Apache-2.0
type: software
identifiers:
  - description: Publication about Tesseract Decoder
    value: 10.48550/arXiv.2503.10988
    type: doi
  - description: GitHub repository for Tesseract Decoder
    value: https://github.com/quantumlib/tesseract-decoder
    type: url
keywords:
  - A*
  - a-star
  - algorithms
  - C++
  - color code
  - QEC
  - QEC code
  - quantum
  - quantum computing
  - quantum error correction
  - research
  - science
  - software
  - surface code
  - syndrome-decoding

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 23
  • Total pull requests: 80
  • Average time to close issues: 11 days
  • Average time to close pull requests: 1 day
  • Total issue authors: 7
  • Total pull request authors: 7
  • Average comments per issue: 0.7
  • Average comments per pull request: 0.26
  • Merged pull requests: 51
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 23
  • Pull requests: 80
  • Average time to close issues: 11 days
  • Average time to close pull requests: 1 day
  • Issue authors: 7
  • Pull request authors: 7
  • Average comments per issue: 0.7
  • Average comments per pull request: 0.26
  • Merged pull requests: 51
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • noajshu (6)
  • oscarhiggott (6)
  • NoureldinYosri (4)
  • mhucka (4)
  • LalehB (1)
  • jasonchadwick (1)
  • ChristopheVuillot (1)
Pull Request Authors
  • mhucka (23)
  • noajshu (18)
  • draganaurosgrbic (11)
  • NoureldinYosri (11)
  • LalehB (9)
  • oscarhiggott (3)
  • gopinath-vasalamarri (1)
Top Labels
Issue Labels
health (2) documentation (1) bug (1)
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 14,868 last-month
  • Total dependent packages: 0
  • Total dependent repositories: 0
  • Total versions: 43
  • Total maintainers: 1
pypi.org: tesseract-decoder

A search-based decoder for quantum error correction (QEC).

  • Versions: 43
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 14,868 Last month
Rankings
Dependent packages count: 8.8%
Stargazers count: 10.3%
Forks count: 10.9%
Average: 19.9%
Dependent repos count: 49.7%
Maintainers (1)
Last synced: 4 months ago

Dependencies

.github/workflows/ci.yml actions
  • actions/checkout v4 composite
  • bazel-contrib/setup-bazel 0.14.0 composite
.github/workflows/citation-updater.yaml actions
  • EndBug/add-and-commit a94899bca583c204427a224a7af87c02f9b325d5 composite
  • actions/checkout 11bd71901bbe5b1630ceea73d27597364c9af683 composite
  • actions/github-script 60a0d83039c74a4aee543508d2ffcb1c3799cdea composite
src/py/requirements.in pypi
  • pytest *
  • stim *
src/py/requirements_lock.txt pypi
  • iniconfig ==2.1.0
  • numpy ==2.2.6
  • packaging ==25.0
  • pluggy ==1.6.0
  • pygments ==2.19.1
  • pytest ==8.4.0
  • stim ==1.15.0
.github/workflows/prerelease.yml actions
  • actions/checkout 11bd71901bbe5b1630ceea73d27597364c9af683 composite
  • actions/download-artifact fa0a91b85d4f404e444e00e005971372dc801d16 composite
  • actions/download-artifact master composite
  • actions/setup-python 42375524e23c412d93fb67b49958b491fce71c38 composite
  • actions/upload-artifact master composite
  • actions/upload-artifact 65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 composite
  • bazel-contrib/setup-bazel 0.14.0 composite
  • pypa/gh-action-pypi-publish 27b31702a0e7fc50959f5ad993c78deac1bdfc29 composite
.github/workflows/stable-release-workflow.yml actions
  • actions/checkout 11bd71901bbe5b1630ceea73d27597364c9af683 composite
  • actions/download-artifact fa0a91b85d4f404e444e00e005971372dc801d16 composite
  • actions/download-artifact master composite
  • actions/setup-python 42375524e23c412d93fb67b49958b491fce71c38 composite
  • actions/upload-artifact master composite
  • actions/upload-artifact 65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 composite
  • bazel-contrib/setup-bazel 0.14.0 composite
  • pypa/gh-action-pypi-publish 27b31702a0e7fc50959f5ad993c78deac1bdfc29 composite