Science Score: 26.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (3.6%) to scientific vocabulary
Scientific Fields
Repository
Basic Info
- Host: GitHub
- Owner: caojiaxi0505
- License: apache-2.0
- Language: Python
- Default Branch: main
- Size: 205 MB
Statistics
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
- Releases: 0
Metadata Files
README.md
FUTR3D
``` FUTR3D causal-conv1d/ # checkpoints/ # configs/ # data/ # mamba/ # mamba_experimental/ # mamba mmdet3d/ # | apis/ | core/ | datasets/ | models/ | ops/ | utils/ plugin/ # | dssmss/ | futr3d/ tools/
```
conda create -n futr3d python=3.8 -y
conda activate futr3d
conda install pytorch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 pytorch-cuda=11.6 -c pytorch -c nvidia
pip install -U openmim
mim install mmengine
mim install mmcv-full==1.7.0
pip install mmdet==2.27.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install mmsegmentation==0.30.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install nuscenes-devkit -i https://pypi.tuna.tsinghua.edu.cn/simple
cd FUTR3D/
pip install -v -e .
pip install numpy==1.23.5 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install yapf==0.40.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
cd causal-conv1d
pip install -v -e .
cd ../
cd mamba
pip install -v -e .
| iter | batch size | num GPUs | mAP | NDS | SyncBN | log | |:---:|:---:|:---:|:---:|:---:|:---:|:---:| | 1 | 2 | 1 | 0.6393 | 0.6925 | x | log | | 14 | 4 | 2 | 0.5347 | 0.5979 | x | log | | 40 | 1 | 4 | 0.3683 | 0.3664 | v | log |
SPLIT 1
SPLIT 14
| Method | iter | mAP | NDS | | | cfg | log | |:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | FUTR3D-L-bs4x2 | 14 | 0.5347 | 0.5979 | baselinebackboneSECONDSyncBN | FPN128256 | cfg | log | | FUTR3D-hednetbackbone-bs4x2 | 14 | 0.5614 | 0.6135 | backbonehednetSyncBN | hednet412Conv2d2ConvTranspose2dChannel256FPN256 | cfg | log | | FUTR3D-hednetbackbone-bs2x2 | 14 | 0.5499 | 0.5961 | backbonehednetSyncBN | hednet412Conv2d2ConvTranspose2dChannel256FPN256 | cfg | log | | FUTR3D-hednetbackbone4-secondmamba1-bs2x2 | 14 | 0.5441 | 0.5903 | backbonehednetSyncBN | hednet412Conv2d2ConvTranspose2dChannel256SECONDMambaBlockFPN256 | cfg | log |
SPLIT 40
| Method | iter | mAP | NDS | | | cfg | log | memory | time | |:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | FUTR3D-L-bs1x4 | 40 | 0.3683 | 0.3664 | baselinebackboneSECONDSyncBN | FPN128256 | cfg | log | 3567 | 4h42min | | FUTR3D-hetnetbackbone-bs1x4 | 40 | 0.4125 | 0.4050 | backbonehednetSyncBN | hednet412Conv2d2ConvTranspose2dChannel256FPN256 | cfg | log | 5774 | 6h1min | | FUTR3D-hednetmiddleencoder128-hednetbackbone-bs1x4 | 40 | 0.4131 | 0.3893 | backbonemiddle encoderhednetSyncBN | hednet412Conv2d2ConvTranspose2dChannel128FPN128 | cfg | log | 5625 | 6h10min | | FUTR3D-hednetmiddleencoder256-hednetbackbone-bs1x4 | 40 | 0.4722 | 0.4382 | backbonemiddle encoderhednetSyncBN | hednet412Conv2d2ConvTranspose2dChannel256FPN256 | cfg | log | 8071 | 8h6min |
GPUGPUSample6019Samples
SECOND-Backbone
Block0
Sequential(
(0): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(7): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(8): ReLU(inplace=True)
(9): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(10): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(11): ReLU(inplace=True)
(12): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(13): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(14): ReLU(inplace=True)
(15): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(16): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(17): ReLU(inplace=True)
)
Block1
Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(7): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(8): ReLU(inplace=True)
(9): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(10): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(11): ReLU(inplace=True)
(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(13): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(14): ReLU(inplace=True)
(15): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(16): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(17): ReLU(inplace=True)
)
FPS: 4.56
mAP: 0.5339
mATE: 0.3768
mASE: 0.2713
mAOE: 0.3987
mAVE: 0.4499
mAAE: 0.2031
NDS: 0.5969
Eval time: 51.1s
Per-class results:
Object Class AP ATE ASE AOE AVE AAE
car 0.799 0.210 0.162 0.134 0.405 0.217
truck 0.498 0.415 0.215 0.169 0.353 0.222
bus 0.601 0.435 0.211 0.138 0.991 0.274
trailer 0.351 0.615 0.222 0.568 0.294 0.178
constructionvehicle 0.185 0.794 0.463 0.975 0.145 0.357
pedestrian 0.756 0.244 0.287 0.615 0.425 0.134
motorcycle 0.558 0.261 0.260 0.361 0.729 0.232
bicycle 0.399 0.193 0.268 0.535 0.257 0.010
trafficcone 0.597 0.211 0.347 nan nan nan
barrier 0.595 0.390 0.277 0.093 nan nan
SPLIT14
GPU:2 & batch size:2
| Method | numGPUs | batchsize | SyncBN | mAP | NDS | time | |:---:|:---:|:---:|:---:|:---:|:---:|:---:| | lidar0075v900q | 2 | 2 | v | 0.5082 | 0.5534 | 7h21min(val4) | | lidar0075v900q_hednetbackbone4 | 2 | 2 | v | 0.5499 | 0.5961 | 10h29min(val4)(+42.63%) |
GPU:4 & batch size:4
| Method | numGPUs | batchsize | SyncBN | mAP | NDS | time | |:---:|:---:|:---:|:---:|:---:|:---:|:---:| | lidar0075v900q | 2 | 4 | v | 0.5343 | 0.5977 | 6h22min(val4) | | lidar0075v900q | 2 | 4 | x | 0.5347 | 0.5979 | 8h48min(val20) | | lidar0075v900q_hednetbackbone4 | 2 | 4 | v | 0.5614 | 0.6135 | 8h47min(val4)(+37.96%) |
SPLIT40
Full dataset
| Method | mAP | NDS | time | infer time | GPUs x batchsize | LR | extra explanation | log | pth | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | lidar0075v900q | 63.3 | 68.9 | - | - | - | - | baseline | - | - | | lidar0075v900qsplit11x2bn2d | 63.93 | 69.25 | 6d22h2min | 16min25s (6.1FPS) | 1 x 2 | 6.25e-6 (1/16) | baseline replicate | log | pth | |
1/5 Split
1/14 Split
Owner
- Name: caojiaxi
- Login: caojiaxi0505
- Kind: user
- Repositories: 1
- Profile: https://github.com/caojiaxi0505
GitHub Events
Total
- Push event: 4
Last Year
- Push event: 4
Dependencies
- ninja *
- packaging *
- torch *
- ninja *
- packaging *
- torch *
- causal_conv1d >=1.4.0
- einops *
- ninja *
- packaging *
- torch *
- transformers *
- triton *
- docutils ==0.16.0
- m2r *
- mistune ==0.8.4
- myst-parser *
- sphinx ==4.0.2
- sphinx-copybutton *
- sphinx_markdown_tables *
- mmcv-full >=1.4.8,<=1.6.0
- mmdet >=2.24.0,<=3.0.0
- mmsegmentation >=0.20.0,<=1.0.0
- open3d *
- spconv *
- waymo-open-dataset-tf-2-1-0 ==1.2.0
- mmcv >=1.4.8
- mmdet >=2.24.0
- mmsegmentation >=0.20.1
- torch *
- torchvision *
- lyft_dataset_sdk *
- networkx >=2.2,<2.3
- numba ==0.53.0
- numpy *
- nuscenes-devkit *
- plyfile *
- scikit-image *
- tensorboard *
- trimesh >=2.35.39,<2.35.40
- asynctest * test
- codecov * test
- flake8 * test
- interrogate * test
- isort * test
- kwarray * test
- pytest * test
- pytest-cov * test
- pytest-runner * test
- ubelt * test
- xdoctest >=0.10.0 test
- yapf * test