contextualspellcheck
✔️Contextual word checker for better suggestions (not actively maintained)
Science Score: 67.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 1 DOI reference(s) in README -
✓Academic publication links
Links to: zenodo.org -
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.7%) to scientific vocabulary
Keywords
Repository
✔️Contextual word checker for better suggestions (not actively maintained)
Basic Info
Statistics
- Stars: 417
- Watchers: 9
- Forks: 64
- Open Issues: 9
- Releases: 15
Topics
Metadata Files
README.md
spellCheck
Contextual word checker for better suggestions
Types of spelling mistakes
It is essential to understand that identifying whether a candidate is a spelling error is a big task.
Spelling errors are broadly classified as non- word errors (NWE) and real word errors (RWE). If the misspelt string is a valid word in the language, then it is called an RWE, else it is an NWE.
This package currently focuses on Out of Vocabulary (OOV) word or non-word error (NWE) correction using BERT model. The idea of using BERT was to use the context when correcting OOV. To improve this package, I would like to extend the functionality to identify RWE, optimising the package, and improving the documentation.
Install
The package can be installed using pip. You would require python 3.6+
bash
pip install contextualSpellCheck
Usage
Note: For use in other languages check examples folder.
How to load the package in spacy pipeline
```python
import contextualSpellCheck import spacy nlp = spacy.load("encoreweb_sm")
We require NER to identify if a token is a PERSON
also require parser because we use
Token.sentfor contextnlp.pipenames ['tok2vec', 'tagger', 'parser', 'ner', 'attributeruler', 'lemmatizer'] contextualSpellCheck.addtopipe(nlp) nlp.pipenames ['tok2vec', 'tagger', 'parser', 'ner', 'attributeruler', 'lemmatizer', 'contextual spellchecker']
doc = nlp('Income was $9.4 milion compared to the prior year of $2.7 milion.') doc..outcomespellCheck 'Income was $9.4 million compared to the prior year of $2.7 million.' ```
Or you can add to spaCy pipeline manually!
```python
import spacy import contextualSpellCheck
nlp = spacy.load("encorewebsm") nlp.pipenames ['tok2vec', 'tagger', 'parser', 'ner', 'attribute_ruler', 'lemmatizer']
You can pass the optional parameters to the contextualSpellCheck
eg. pass max edit distance use config={"maxeditdist": 3}
nlp.addpipe("contextual spellchecker")
nlp.pipe names ['tok2vec', 'tagger', 'parser', 'ner', 'attribute_ruler', 'lemmatizer', 'contextual spellchecker']doc = nlp("Income was $9.4 milion compared to the prior year of $2.7 milion.") print(doc..performedspellCheck) True print(doc..outcomespellCheck) Income was $9.4 million compared to the prior year of $2.7 million. ```
After adding contextual spellchecker in the pipeline, you use the pipeline normally. The spell check suggestions and other data can be accessed using extensions.
Using the pipeline
```python
doc = nlp(u'Income was $9.4 milion compared to the prior year of $2.7 milion.')
Doc Extention
print(doc..contextualspellCheck) True print(doc..performedspellCheck) True print(doc..suggestionsspellCheck) {milion: 'million', milion: 'million'} print(doc..outcomespellCheck) Income was $9.4 million compared to the prior year of $2.7 million. print(doc..scorespellCheck) {milion: [('million', 0.59422), ('billion', 0.24349), (',', 0.08809), ('trillion', 0.01835), ('Million', 0.00826), ('%', 0.00672), ('##M', 0.00591), ('annually', 0.0038), ('##B', 0.00205), ('USD', 0.00113)], milion: [('billion', 0.65934), ('million', 0.26185), ('trillion', 0.05391), ('##M', 0.0051), ('Million', 0.00425), ('##B', 0.00268), ('USD', 0.00153), ('##b', 0.00077), ('millions', 0.00059), ('%', 0.00041)]}
Token Extention
print(doc[4]..getrequirespellCheck) True print(doc[4]..getsuggestionspellCheck) 'million' print(doc[4]..scorespellCheck) [('million', 0.59422), ('billion', 0.24349), (',', 0.08809), ('trillion', 0.01835), ('Million', 0.00826), ('%', 0.00672), ('##M', 0.00591), ('annually', 0.0038), ('##B', 0.00205), ('USD', 0.00113)]
Span Extention
print(doc[2:6]..gethasspellCheck) True print(doc[2:6]..score_spellCheck) {$: [], 9.4: [], milion: [('million', 0.59422), ('billion', 0.24349), (',', 0.08809), ('trillion', 0.01835), ('Million', 0.00826), ('%', 0.00672), ('##M', 0.00591), ('annually', 0.0038), ('##B', 0.00205), ('USD', 0.00113)], compared: []} ```
Extensions
To make the usage easy, contextual spellchecker provides custom spacy extensions which your code can consume. This makes it easier for the user to get the desired data. contextualSpellCheck provides extensions on the doc, span and token level. The below tables summarise the extensions.
spaCy.Doc level extensions
| Extension | Type | Description | Default |
|------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| doc..contextualspellCheck | Boolean | To check whether contextualSpellCheck is added as extension | True |
| doc..performedspellCheck | Boolean | To check whether contextualSpellCheck identified any misspells and performed correction | False |
| doc..suggestionsspellCheck | {Spacy.Token:str} | if corrections are performed, it returns the mapping of misspell token (spaCy.Token) with suggested word(str) | {} |
| doc..outcomespellCheck | str | corrected sentence(str) as output | "" |
| doc..scorespellCheck | {Spacy.Token:List(str,float)} | if corrections are identified, it returns the mapping of misspell token (spaCy.Token) with suggested words(str) and probability of that correction | None |
spaCy.Span level extensions
| Extension | Type | Description | Default |
|-------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| span..gethasspellCheck | Boolean | To check whether contextualSpellCheck identified any misspells and performed correction in this span | False |
| span..score_spellCheck | {Spacy.Token:List(str,float)} | if corrections are identified, it returns the mapping of misspell token (spaCy.Token) with suggested words(str) and probability of that correction for tokens in this span | {spaCy.Token: []} |
spaCy.Token level extensions
| Extension | Type | Description | Default |
|-----------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------|---------|
| token..getrequirespellCheck | Boolean | To check whether contextualSpellCheck identified any misspells and performed correction on this token | False |
| token..getsuggestionspellCheck | str | if corrections are performed, it returns the suggested word(str) | "" |
| token..scorespellCheck | [(str,float)] | if corrections are identified, it returns suggested words(str) and probability(float) of that correction | [] |
API
At present, there is a simple GET API to get you started. You can run the app in your local and play with it.
Query: You can use the endpoint http://127.0.0.1:5000/?query=YOUR-QUERY Note: Your browser can handle the text encoding
GET Request: http://localhost:5000/?query=Income%20was%20$9.4%20milion%20compared%20to%20the%20prior%20year%20of%20$2.7%20milion.
Response:
json
{
"success": true,
"input": "Income was $9.4 milion compared to the prior year of $2.7 milion.",
"corrected": "Income was $9.4 milion compared to the prior year of $2.7 milion.",
"suggestion_score": {
"milion": [
[
"million",
0.59422
],
[
"billion",
0.24349
],
...
],
"milion:1": [
[
"billion",
0.65934
],
[
"million",
0.26185
],
...
]
}
}
Task List
- [ ] use cython for part of the code to improve performance (#39)
- [ ] Improve metric for candidate selection (#40)
- [ ] Add examples for other langauges (#41)
- [ ] Update the logic of misspell identification (OOV) (#44)
- [ ] better candidate generation (solved by #44?)
- [ ] add metric by testing on datasets
- [ ] Improve documentation
- [ ] Improve logging in code
- [ ] Add support for Real Word Error (RWE) (Big Task)
- [ ] add multi mask out capability
Completed Task
- [x] specify maximum edit distance for `candidateRanking` - [x] allow user to specify bert model - [x] Include transformers deTokenizer to get better suggestions - [x] dependency version in setup.py ([#38](https://github.com/R1j1t/contextualSpellCheck/issues/38))
Support and contribution
If you like the project, please ⭑ the project and show your support! Also, if you feel, the current behaviour is not as expected, please feel free to raise an issue. If you can help with any of the above tasks, please open a PR with necessary changes to documentation and tests.
Cite
If you are using contextualSpellCheck in your academic work, please consider citing the library using the below BibTex entry:
bibtex
@misc{Goel_Contextual_Spell_Check_2021,
author = {Goel, Rajat},
doi = {10.5281/zenodo.4642379},
month = {3},
title = {{Contextual Spell Check}},
url = {https://github.com/R1j1t/contextualSpellCheck},
year = {2021}
}
Reference
Below are some of the projects/work I referred to while developing this package
- Explosion AI.Architecture. May 2020. url:https://spacy.io/api.
- Monojit Choudhury et al. “How difficult is it to develop a perfect spell-checker? A cross-linguistic analysis through complex network approach”. In:arXiv preprint physics/0703198(2007).
- Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transform-ers for Language Understanding. 2019. arXiv:1810.04805 [cs.CL].
- Hugging Face.Fast Coreference Resolution in spaCy with Neural Net-works. May 2020. url:https://github.com/huggingface/neuralcoref.
- Ines.Chapter 3: Processing Pipelines. May 20202. url:https://course.spacy.io/en/chapter3.
- Eric Mays, Fred J Damerau, and Robert L Mercer. “Context based spellingcorrection”. In:Information Processing & Management27.5 (1991), pp. 517–522.
- Peter Norvig. How to Write a Spelling Corrector. May 2020. url:http://norvig.com/spell-correct.html.
- Yifu Sun and Haoming Jiang.Contextual Text Denoising with MaskedLanguage Models. 2019. arXiv:1910.14080 [cs.CL].
- Thomas Wolf et al. “Transformers: State-of-the-Art Natural LanguageProcessing”. In:Proceedings of the 2020 Conference on Empirical Methodsin Natural Language Processing: System Demonstrations. Online: Associ-ation for Computational Linguistics, Oct. 2020, pp. 38–45. url:https://www.aclweb.org/anthology/2020.emnlp-demos.6.
Owner
- Name: Rajat
- Login: R1j1t
- Kind: user
- Repositories: 34
- Profile: https://github.com/R1j1t
Computational Chemist (in the making) | Contact me: r1j1t [at] pm.me
Citation (CITATION.cff)
cff-version: 1.2.0 message: "If you use this software, please cite it as below." authors: - family-names: "Goel" given-names: "Rajat" orcid: "https://orcid.org/0000-0002-8051-9798" title: "Contextual Spell Check" version: 0.4.1 doi: 10.5281/zenodo.4642379 date-released: 2021-03-1 url: "https://github.com/R1j1t/contextualSpellCheck"
GitHub Events
Total
- Issues event: 1
- Watch event: 11
- Delete event: 2
- Issue comment event: 12
- Push event: 1
- Pull request event: 5
- Fork event: 2
Last Year
- Issues event: 1
- Watch event: 11
- Delete event: 2
- Issue comment event: 12
- Push event: 1
- Pull request event: 5
- Fork event: 2
Committers
Last synced: 7 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| R1j1t | 2****t | 129 |
| dc-aichara | d****7@g****m | 12 |
| Alvarole | l****7@l****m | 4 |
| tpanza | 1****a | 1 |
| manooka | 7****m | 1 |
| Nikita Sobolev | m****l@s****e | 1 |
| Adheeshk13 | 1****3 | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 44
- Total pull requests: 52
- Average time to close issues: about 2 months
- Average time to close pull requests: about 1 month
- Total issue authors: 37
- Total pull request authors: 12
- Average comments per issue: 3.2
- Average comments per pull request: 1.35
- Merged pull requests: 42
- Bot issues: 0
- Bot pull requests: 2
Past Year
- Issues: 2
- Pull requests: 3
- Average time to close issues: N/A
- Average time to close pull requests: 3 months
- Issue authors: 2
- Pull request authors: 2
- Average comments per issue: 1.0
- Average comments per pull request: 4.0
- Merged pull requests: 1
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- R1j1t (5)
- nicno90 (2)
- AlvaroCavalcante (2)
- gaurav0804 (2)
- KennethEnevoldsen (1)
- xei (1)
- virdiprateek (1)
- Xiaoping777 (1)
- geeky-programer (1)
- yishairasowsky (1)
- BradenAnderson (1)
- Jonathanpro (1)
- CamilleSchr (1)
- tpanza (1)
- wushixian (1)
Pull Request Authors
- R1j1t (37)
- AlvaroCavalcante (2)
- dependabot[bot] (2)
- dc-aichara (2)
- fingoldo (2)
- it176131 (2)
- adkiem (1)
- tpanza (1)
- sobolevn (1)
- Adheeshk13 (1)
- jonmun (1)
- maxbachmann (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- pypi 6,732 last-month
- Total docker downloads: 8
- Total dependent packages: 1
- Total dependent repositories: 4
- Total versions: 18
- Total maintainers: 1
pypi.org: contextualspellcheck
Contextual spell correction using BERT (bidirectional representations)
- Homepage: https://github.com/R1j1t/contextualSpellCheck
- Documentation: https://contextualspellcheck.readthedocs.io/
- License: MIT License
-
Latest release: 0.4.4
published about 2 years ago
Rankings
Maintainers (1)
Dependencies
- black ==20.8b1
- editdistance ==0.5.3
- flake8 >=3.8.3
- pytest *
- spacy >=3.0.0
- torch >=1.4
- transformers >=4.0.0
- editdistance ==0.5.3
- spacy >=3.0.0
- torch >=1.4
- transformers >=4.0.0
- actions/checkout v2 composite
- github/codeql-action/analyze v1 composite
- github/codeql-action/autobuild v1 composite
- github/codeql-action/init v1 composite
- actions/checkout v4 composite
- actions/setup-python v4 composite
