doubleml-for-py
DoubleML - Double Machine Learning in Python
Science Score: 67.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 7 DOI reference(s) in README -
○Academic publication links
-
✓Committers with academic emails
2 of 15 committers (13.3%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (14.9%) to scientific vocabulary
Keywords
Repository
DoubleML - Double Machine Learning in Python
Basic Info
- Host: GitHub
- Owner: DoubleML
- License: bsd-3-clause
- Language: Python
- Default Branch: main
- Homepage: https://docs.doubleml.org
- Size: 10.1 MB
Statistics
- Stars: 640
- Watchers: 15
- Forks: 98
- Open Issues: 28
- Releases: 30
Topics
Metadata Files
README.md
DoubleML - Double Machine Learning in Python 
The Python package DoubleML provides an implementation of the double / debiased machine learning framework of Chernozhukov et al. (2018). It is built on top of scikit-learn (Pedregosa et al., 2011).
Note that the Python package was developed together with an R twin based on mlr3.
The R package is also available on GitHub and
.
Documentation and Maintenance
Documentation and website: https://docs.doubleml.org/
DoubleML is currently maintained by @PhilippBach and @SvenKlaassen.
Bugs can be reported to the issue tracker at https://github.com/DoubleML/doubleml-for-py/issues.
Main Features
Double / debiased machine learning (Chernozhukov et al. (2018)) for
- Partially linear regression models (PLR)
- Partially linear IV regression models (PLIV)
- Interactive regression models (IRM)
- Interactive IV regression models (IIVM)
The object-oriented implementation of DoubleML is very flexible.
The model classes DoubleMLPLR, DoubleMLPLIV, DoubleMLIRM and DoubleIIVM implement the estimation of the nuisance
functions via machine learning methods and the computation of the Neyman orthogonal score function.
All other functionalities are implemented in the abstract base class DoubleML.
In particular functionalities to estimate double machine learning models and to perform statistical inference via the
methods fit, bootstrap, confint, p_adjust and tune.
This object-oriented implementation allows a high flexibility for the model specification in terms of ...
- ... the machine learners for the nuisance functions,
- ... the resampling schemes,
- ... the double machine learning algorithm,
- ... the Neyman orthogonal score functions,
- ...
It further can be readily extended with regards to
- ... new model classes that come with Neyman orthogonal score functions being linear in the target parameter,
- ... alternative score functions via callables,
- ... alternative resampling schemes,
- ...
Installation
DoubleML requires
- Python
- sklearn
- numpy
- scipy
- pandas
- statsmodels
- joblib
To install DoubleML with pip use
pip install -U DoubleML
DoubleML can be installed from source via
git clone git@github.com:DoubleML/doubleml-for-py.git
cd doubleml-for-py
pip install --editable .
Detailed installation instructions can be found in the documentation.
Contributing
DoubleML is a community effort. Everyone is welcome to contribute. To get started for your first contribution we recommend reading our contributing guidelines and our code of conduct.
Citation
If you use the DoubleML package a citation is highly appreciated:
You can click the "Cite this repository" button at the top of the GitHub page to cite the package directly. Alternatively, you can cite the following paper:
Bach, P., Chernozhukov, V., Kurz, M. S., and Spindler, M. (2022), DoubleML - An Object-Oriented Implementation of Double Machine Learning in Python, Journal of Machine Learning Research, 23(53): 1-6, https://www.jmlr.org/papers/v23/21-0862.html.
Bibtex-entry:
@article{DoubleML2022,
title = {{DoubleML} -- {A}n Object-Oriented Implementation of Double Machine Learning in {P}ython},
author = {Philipp Bach and Victor Chernozhukov and Malte S. Kurz and Martin Spindler},
journal = {Journal of Machine Learning Research},
year = {2022},
volume = {23},
number = {53},
pages = {1--6},
url = {http://jmlr.org/papers/v23/21-0862.html}
}
Acknowledgements
Funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) is acknowledged – Project Number 431701914.
References
Bach, P., Chernozhukov, V., Kurz, M. S., and Spindler, M. (2022), DoubleML - An Object-Oriented Implementation of Double Machine Learning in Python, Journal of Machine Learning Research, 23(53): 1-6, https://www.jmlr.org/papers/v23/21-0862.html.
Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. and Robins, J. (2018), Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21: C1-C68. doi:10.1111/ectj.12097.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011), Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12: 2825--2830, https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html.
Owner
- Name: DoubleML
- Login: DoubleML
- Kind: organization
- Website: doubleml.org
- Repositories: 7
- Profile: https://github.com/DoubleML
Citation (CITATION.cff)
# This CITATION.cff file was generated with cffinit.
# Visit https://bit.ly/cffinit to generate yours today!
cff-version: 1.2.0
title: DoubleML - Double Machine Learning in Python
message: >-
If you use this software, please cite it using the
metadata from this file.
type: software
authors:
- given-names: Philipp
family-names: Bach
email: philipp.bach@uni-hamburg.de
affiliation: University of Hamburg
orcid: 'https://orcid.org/0000-0002-7183-9239'
- given-names: Victor
family-names: Chernozhukov
affiliation: MIT
orcid: 'https://orcid.org/0000-0002-3250-6714'
email: vchern@mit.edu
- given-names: Sven
family-names: Klaassen
email: sven.klaassen@uni-hamburg.de
affiliation: University of Hamburg
orcid: 'https://orcid.org/0009-0004-9080-0809'
- given-names: Malte S.
family-names: Kurz
- given-names: Martin
family-names: Spindler
email: martin.spindler@uni-hamburg.de
orcid: 'https://orcid.org/0000-0002-1294-7782'
affiliation: University of Hamburg
repository-code: 'https://github.com/DoubleML/doubleml-for-py'
url: 'https://docs.doubleml.org/stable/index.html'
license: BSD-3-Clause
references:
- type: article
authors:
- given-names: Philipp
family-names: Bach
- given-names: Victor
family-names: Chernozhukov
- given-names: Malte S.
family-names: Kurz
- given-names: Martin
family-names: Spindler
title: "DoubleML - An Object-Oriented Implementation of Double Machine Learning in Python"
journal: Journal of Machine Learning Research
year: 2022
volume: 23
issue: 53
start: 1
end: 6
url: http://jmlr.org/papers/v23/21-0862.html
- type: article
authors:
- given-names: Philipp
family-names: Bach
- given-names: Malte S.
family-names: Kurz
- given-names: Victor
family-names: Chernozhukov
- given-names: Martin
family-names: Spindler
- given-names: Sven
family-names: Klaassen
title: "DoubleML: An Object-Oriented Implementation of Double Machine Learning in R"
journal: Journal of Statistical Software
year: 2024
volume: 108
issue: 3
start: 1
end: 56
doi: 10.18637/jss.v108.i03
url: https://www.jstatsoft.org/index.php/jss/article/view/v108i03
GitHub Events
Total
- Create event: 34
- Release event: 4
- Issues event: 34
- Watch event: 138
- Delete event: 4
- Issue comment event: 33
- Push event: 300
- Pull request review event: 54
- Pull request review comment event: 55
- Pull request event: 56
- Fork event: 23
Last Year
- Create event: 34
- Release event: 4
- Issues event: 34
- Watch event: 138
- Delete event: 4
- Issue comment event: 33
- Push event: 300
- Pull request review event: 54
- Pull request review comment event: 55
- Pull request event: 56
- Fork event: 23
Committers
Last synced: 9 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Sven Klaassen | 4****n | 1,155 |
| Malte S. Kurz | m****z@g****m | 1,113 |
| OliverSchacht | 6****t | 73 |
| Philipp Bach | b****p@o****m | 54 |
| Jan Teichert-Kluge | j****e@u****e | 52 |
| Michaela Kecskésová | x****0@f****z | 38 |
| Philipp Schwarz | P****z@a****m | 8 |
| Schacht | B****0@u****e | 7 |
| David Masip | d****4@g****m | 5 |
| Ezequiel Smucler | e****0@g****m | 3 |
| Kin Ho Lucien Lo | l****o@l****e | 3 |
| LGTM Migrator | l****r | 1 |
| anntis | a****a@g****m | 1 |
| Kin Ho Lo | k****o@b****m | 1 |
| Kin Ho Lucien Lo | l****o@l****e | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 70
- Total pull requests: 155
- Average time to close issues: 3 months
- Average time to close pull requests: 14 days
- Total issue authors: 27
- Total pull request authors: 14
- Average comments per issue: 1.13
- Average comments per pull request: 0.58
- Merged pull requests: 142
- Bot issues: 0
- Bot pull requests: 1
Past Year
- Issues: 25
- Pull requests: 51
- Average time to close issues: 28 days
- Average time to close pull requests: 8 days
- Issue authors: 6
- Pull request authors: 7
- Average comments per issue: 0.6
- Average comments per pull request: 0.55
- Merged pull requests: 43
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- SvenKlaassen (25)
- MalteKurz (15)
- PhilippBach (4)
- Alalalalaki (2)
- gzhelev2020 (2)
- OliverSchacht (1)
- esmucler (1)
- AlejandroTL (1)
- prateekgv (1)
- yangfanliang (1)
- JohannWO (1)
- kkckk1110 (1)
- apoorvalal (1)
- MarkovSc (1)
- tmieno2 (1)
Pull Request Authors
- SvenKlaassen (89)
- MalteKurz (50)
- OliverSchacht (14)
- PhilippBach (5)
- mychaelka (4)
- JanTeichertKluge (2)
- lucien1011 (2)
- esmucler (2)
- PragyanTiwari (2)
- ShreyDixit (1)
- vnastl (1)
- CarlesRieraA (1)
- anntis (1)
- lgtm-com[bot] (1)
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- pydata-sphinx-theme * development
- pytest * development
- sphinx * development
- xgboost * development
- joblib *
- numpy *
- pandas *
- scipy *
- sklearn *
- statsmodels *
- joblib *
- numpy *
- pandas *
- scipy *
- sklearn *
- statsmodels *
- actions/checkout v3 composite
- github/codeql-action/analyze v2 composite
- github/codeql-action/autobuild v2 composite
- github/codeql-action/init v2 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/upload-artifact v3 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- codacy/codacy-coverage-reporter-action v1 composite
- codecov/codecov-action v3 composite