scnanoseq

Single-cell/nuclei pipeline for data derived from Oxford Nanopore and 10X Genomics

https://github.com/nf-core/scnanoseq

Science Score: 57.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 12 DOI reference(s) in README
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (10.7%) to scientific vocabulary

Keywords

10xgenomics long-read-sequencing nanopore nextflow nf-core pipeline scrna-seq single-cell workflow
Last synced: 6 months ago · JSON representation ·

Repository

Single-cell/nuclei pipeline for data derived from Oxford Nanopore and 10X Genomics

Basic Info
  • Host: GitHub
  • Owner: nf-core
  • License: mit
  • Language: Nextflow
  • Default Branch: master
  • Homepage: https://nf-co.re/scnanoseq/
  • Size: 41.4 MB
Statistics
  • Stars: 44
  • Watchers: 47
  • Forks: 16
  • Open Issues: 13
  • Releases: 4
Topics
10xgenomics long-read-sequencing nanopore nextflow nf-core pipeline scrna-seq single-cell workflow
Created almost 4 years ago · Last pushed 6 months ago
Metadata Files
Readme Changelog Contributing License Code of conduct Citation

README.md

nf-core/scnanoseq

GitHub Actions CI Status GitHub Actions Linting StatusAWS CICite with Zenodo nf-test

Nextflow run with conda run with docker run with singularity Launch on Seqera Platform

Get help on SlackFollow on TwitterFollow on MastodonWatch on YouTube

Introduction

nf-core/scnanoseq is a bioinformatics best-practice analysis pipeline for 10X Genomics single-cell/nuclei RNA-seq data derived from Oxford Nanopore Q20+ chemistry (R10.4 flow cells (>Q20)). Due to the expectation of >Q20 quality, the input data for the pipeline does not depend on Illumina paired data. Please note scnanoseq can also process Oxford data with older chemistry, but we encourage usage of the Q20+ chemistry when possible.

The pipeline is built using Nextflow, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It uses Docker/Singularity containers making installation trivial and results highly reproducible. The Nextflow DSL2 implementation of this pipeline uses one container per process which makes it much easier to maintain and update software dependencies. Where possible, these processes have been submitted to and installed from nf-core/modules in order to make them available to all nf-core pipelines, and to everyone within the Nextflow community!

On release, automated continuous integration tests run the pipeline on a full-sized dataset on the AWS cloud infrastructure. This ensures that the pipeline runs on AWS, has sensible resource allocation defaults set to run on real-world datasets, and permits the persistent storage of results to benchmark between pipeline releases and other analysis sources. The results obtained from the full-sized test can be viewed on the nf-core website.

Pipeline summary

scnanoseq diagram

  1. Raw read QC (FastQC, NanoPlot, NanoComp and ToulligQC)
  2. Unzip and split FASTQ (pigz)
    1. Optional: Split FASTQ for faster processing (split)
  3. Trim and filter reads (Nanofilt)
  4. Post trim QC (FastQC, NanoPlot, NanoComp and ToulligQC)
  5. Barcode detection using a custom whitelist or 10X whitelist. (BLAZE)
  6. Extract barcodes. Consists of the following steps:
    1. Parse FASTQ files into R1 reads containing barcode and UMI and R2 reads containing sequencing without barcode and UMI (custom script ./bin/pre_extract_barcodes.py)
    2. Re-zip FASTQs (pigz)
  7. Barcode correction (custom script ./bin/correct_barcodes.py)
  8. Post-extraction QC (FastQC, NanoPlot, NanoComp and ToulligQC)
  9. Alignment to the genome, transcriptome, or both (minimap2)
  10. Post-alignment filtering of mapped reads and gathering mapping QC (SAMtools)
  11. Post-alignment QC in unfiltered BAM files (NanoComp, RSeQC)
  12. Barcode (BC) tagging with read quality, BC quality, UMI quality (custom script ./bin/tag_barcodes.py)
  13. Read deduplication (UMI-tools OR Picard MarkDuplicates)
  14. Gene and transcript level matrices generation with IsoQuant and/or transcript level matrices with oarfish
  15. Preliminary matrix QC (Seurat)
  16. Compile QC for raw reads, trimmed reads, pre and post-extracted reads, mapping metrics and preliminary single-cell/nuclei QC (MultiQC)

Usage

[!NOTE] If you are new to Nextflow and nf-core, please refer to this page on how to set-up Nextflow. Make sure to test your setup with -profile test before running the workflow on actual data.

First, prepare a samplesheet with your input data that looks as follows:

csv title="samplesheet.csv" sample,fastq,cell_count CONTROL_REP1,AEG588A1_S1.fastq.gz,5000 CONTROL_REP1,AEG588A1_S2.fastq.gz,5000 CONTROL_REP2,AEG588A2_S1.fastq.gz,5000 CONTROL_REP3,AEG588A3_S1.fastq.gz,5000 CONTROL_REP4,AEG588A4_S1.fastq.gz,5000 CONTROL_REP4,AEG588A4_S2.fastq.gz,5000 CONTROL_REP4,AEG588A4_S3.fastq.gz,5000

Each row represents a single-end fastq file. Rows with the same sample identifier are considered technical replicates and will be automatically merged. cell_count refers to the expected number of cells you expect.

bash nextflow run nf-core/scnanoseq \ -profile <docker/singularity/.../institute> \ --input samplesheet.csv \ --outdir <OUTDIR>

[!WARNING] Please provide pipeline parameters via the CLI or Nextflow -params-file option. Custom config files including those provided by the -c Nextflow option can be used to provide any configuration except for parameters; see docs.

For more details and further functionality, please refer to the usage documentation and the parameter documentation.

Pipeline output

This pipeline produces feature-barcode matrices as the main output. These feature-barcode matrices are able to be ingested directly by most packages used for downstream analyses such as Seurat. Additionally, the pipeline produces a number of quality control metrics to ensure that the samples processed meet expected metrics for single-cell/nuclei data.

The pipeline provides two tools to produce the aforementioned feature-barcode matrices, IsoQuant and oarfish, and the user is given the ability to choose whether to run both or just one. IsoQuant will require a genome fasta to be used as input to the pipeline, and will produce both gene and transcript level matrices. oarfish will require a transcriptome fasta to be used as input to the pipeline and will produce only transcript level matrices.

To see the results of an example test run with a full size dataset refer to the results tab on the nf-core website pipeline page. For more details about the full set of output files and reports, please refer to the output documentation.

Troubleshooting

If you experience any issues, please make sure to reach out on the #scnanoseq slack channel or open an issue on our GitHub repository. However, some resolutions for common issues will be noted below:

  • Due to the nature of the data this pipeline analyzes, some tools may experience increased runtimes. For some of the custom tools made for this pipeline (preextract_fastq.py and correct_barcodes.py), we have leveraged the splitting done via the split_amount parameter to decrease their overall runtimes. The split_amount parameter will split the input FASTQs into a number of FASTQ files, each containing a number of lines based on the value used for this parameter. As a result, it is important not to set this parameter to be too low as doing so would cause the creation of a large number of files the pipeline will be processed. While this value can be highly dependent on the data, a good starting point for an analysis would be to set this value to 500000. If you find that PREEXTRACT_FASTQ and CORRECT_BARCODES are still taking long amounts of time to run, it would be worth reducing this parameter to 200000 or 100000, but keeping the value on the order of hundred of thousands or tens of thousands should help with keeping the total number of processes minimal. An example of setting this parameter to be equal to 500000 is shown below:

yml title="params.yml" split_amount: 500000

  • We have seen a recurrent node failure on slurm clusters that does seem to be related to submission of Nextflow jobs. This issue is not related to this pipeline per se, but rather to Nextflow itself. We are currently working on a resolution. But we have two methods that appear to help overcome should this issue arise:
    1. Provide a custom config that increases the memory request for the job that failed. This may take a couple attempts to find the correct requests, but we have noted that there does appear to be a memory issue occasionally with these errors.
    2. Request an interactive session with a decent amount of time and memory and CPUs in order to run the pipeline on the single node. Note that this will take time as there will be minimal parallelization, but this does seem to resolve the issue.
  • We note that umitools dedup can take a large amount of time in order to perform deduplication. One approach we have implemented to assist with speed is to split input files based on chromosome. However for the transcriptome aligned bams, there is some additional work required that involves grouping transcripts into appropriate chromosomes. In order to accomplish this, the pipeline needs to parse the transcript id from the transcriptome FASTA file. The transcript id is often nested in the sequence identifier with additional data and the data is delimited. We have included the delimiters used by reference files obtained from GENCODE, NCBI, and Ensembl. However in case you wish to explicitly control this or if the reference file source uses a different delimiter, you are able to manually set it via the --fasta_delimiter parameter.
  • We acknowledge that analyzing PromethION data is a common use case for this pipeline. Currently, the pipeline has been developed with defaults to analyze GridION and average sized PromethION data. For cases, where jobs have fail due for larger PromethION datasets, the defaults can be overwritten by a custom configuation file (provided by the -c Nextflow option) where resources can be increased (substantially in some cases). Below are some of the overrides we have used, and while these amounts may not work on every dataset, these will hopefully at least note which processes will need to have their resources increased:

```groovy title="custom.config"

process { withName: '.:.FASTQC.*' { cpus = 20 } }

process { withName: '.*:BLAZE' { cpus = 30 } }

process { withName: '.*:TAG_BARCODES' { memory = '60.GB' } }

process { withName: '.*:SAMTOOLS_SORT' { cpus = 20 } }

process { withName: '.*:MINIMAP2_ALIGN' { cpus = 20 } }

process { withName: '.*:ISOQUANT' { cpus = 30 memory = '85.GB' } } ```

We further note that while we encourage the use of split_amount as discussed above for larger datasets, the pipeline can be executed without enabling this parameter. When doing this, please consider increasing the time limit to CORRECT_BARCODES as it can take hours instead of minutes when split_amount is disabled:

groovy title="custom.config" //NOTE: with split_amount disabled, consider increasing the time limit to CORRECT_BARCODES process { withName: '.*:CORRECT_BARCODES' { time = '15.h' } }

Credits

nf-core/scnanoseq was originally written by Austyn Trull, and Dr. Lara Ianov.

We would also like to thank the following people and groups for their support, including financial support:

  • Dr. Elizabeth Worthey
  • University of Alabama at Birmingham Biological Data Science Core (U-BDS), RRID:SCR_021766, https://github.com/U-BDS
  • Civitan International Research Center
  • Support from: 3P30CA013148-48S8

Contributions and Support

If you would like to contribute to this pipeline, please see the contributing guidelines.

For further information or help, don't hesitate to get in touch on the Slack #scnanoseq channel (you can join with this invite).

Citations

If you use nf-core/scnanoseq for your analysis, please cite the article as follows:

scnanoseq: an nf-core pipeline for Oxford Nanopore single-cell RNA-sequencing

Austyn Trull, nf-core community, Elizabeth A. Worthey, Lara Ianov

bioRxiv 2025.04.08.647887; doi: https://doi.org/10.1101/2025.04.08.647887

The specific pipleine version can be cited using the following doi: 10.5281/zenodo.13899279

An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md file.

You can cite the nf-core publication as follows:

The nf-core framework for community-curated bioinformatics pipelines.

Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.

Nat Biotechnol. 2020 Feb 13. doi: 10.1038/s41587-020-0439-x.

Owner

  • Name: nf-core
  • Login: nf-core
  • Kind: organization
  • Email: core@nf-co.re

A community effort to collect a curated set of analysis pipelines built using Nextflow.

Citation (CITATIONS.md)

# nf-core/scnanoseq: Citations

## [nf-core](https://pubmed.ncbi.nlm.nih.gov/32055031/)

## [nf-core/scnanoseq](https://doi.org/10.1101/2025.04.08.647887)

> Trull A, nf-core community, Worthey EA, Ianov L. scnanoseq: an nf-core pipeline for Oxford Nanopore single-cell RNA-sequencing. bioRxiv 2025.04.08.647887; doi: https://doi.org/10.1101/2025.04.08.647887

> Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020 Mar;38(3):276-278. doi: 10.1038/s41587-020-0439-x. PubMed PMID: 32055031.

## [Nextflow](https://pubmed.ncbi.nlm.nih.gov/28398311/)

> Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017 Apr 11;35(4):316-319. doi: 10.1038/nbt.3820. PubMed PMID: 28398311.

## Pipeline tools

- [BLAZE](https://pubmed.ncbi.nlm.nih.gov/37024980/)

  > You Y, Prawer YDJ, De Paoli-Iseppi R, Hunt CPJ, Parish CL, Shim H, Clark MB. Identification of cell barcodes from long-read single-cell RNA-seq with BLAZE. Genome Biol. 2023 Apr 6;24(1):66. doi: 10.1186/s13059-023-02907-y. PMID: 37024980; PMCID: PMC10077662.

- [FastQC](https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

  > Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online].

- [IsoQuant](https://pubmed.ncbi.nlm.nih.gov/36593406/)

  > Prjibelski AD, Mikheenko A, Joglekar A, Smetanin A, Jarroux J, Lapidus AL, Tilgner HU. Accurate isoform discovery with IsoQuant using long reads. Nat Biotechnol. 2023 Jul;41(7):915-918. doi: 10.1038/s41587-022-01565-y. Epub 2023 Jan 2. PMID: 36593406; PMCID: PMC10344776.

- [Minimap2](https://pubmed.ncbi.nlm.nih.gov/29750242/)

  > Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018 Sep 15;34(18):3094-3100. doi: 10.1093/bioinformatics/bty191. PMID: 29750242; PMCID: PMC6137996.

- [MultiQC](https://pubmed.ncbi.nlm.nih.gov/27312411/)

  > Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016 Oct 1;32(19):3047-8. doi: 10.1093/bioinformatics/btw354. Epub 2016 Jun 16. PubMed PMID: 27312411; PubMed Central PMCID: PMC5039924.

- [NanoComp](https://pubmed.ncbi.nlm.nih.gov/29547981/)

  > De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018 Aug 1; 34(15):2666-9 doi:10.1093/bioinformatics/bty149. PubMed PMID: 29547981; PubMed Central PMCID: PMC6061794.

- [Nanofilt](https://pubmed.ncbi.nlm.nih.gov/29547981/)

  > De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018 Aug 1; 34(15):2666-9 doi:10.1093/bioinformatics/bty149. PubMed PMID: 29547981; PubMed Central PMCID: PMC6061794.

- [NanoPlot](https://pubmed.ncbi.nlm.nih.gov/29547981/)

  > De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018 Aug 1;34(15):2666-2669. doi: 10.1093/bioinformatics/bty149. PubMed PMID: 29547981; PubMed Central PMCID: PMC6061794.

- [oarfish](https://github.com/COMBINE-lab/oarfish)

  > Jousheghani ZZ, Singh NP, Patro R. Oarfish: Enhanced probabilistic modeling leads to improved accuracy in long read transcriptome quantification. Bioinformatics. 2025 Jul 1;41(Supplement_1):i304-i313. doi: 10.1093/bioinformatics/btaf240. PMID: 40662837; PMCID: PMC12261437.

- [pigz](https://zlib.net/pigz/)

- [SAMtools](https://pubmed.ncbi.nlm.nih.gov/19505943/)

  > Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009 Aug 15;25(16):2078-9. doi: 10.1093/bioinformatics/btp352. Epub 2009 Jun 8. PubMed PMID: 19505943; PubMed Central PMCID: PMC2723002.

- [ToulligQC](https://github.com/GenomiqueENS/toulligQC)

  > Karine Dias, Bérengère Laffay, Lionel Ferrato-Berberian, Sophie Lemoine, Ali Hamraoui, Morgane Thomas-Chollier, Stéphane Le Crom and Laurent Jourdren.

- [UMI-tools](https://pubmed.ncbi.nlm.nih.gov/28100584/)

  > Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy Genome Res. 2017 Mar;27(3):491-499. doi: 10.1101/gr.209601.116. Epub 2017 Jan 18. PubMed PMID: 28100584; PubMed Central PMCID: PMC5340976.

- [Picard](https://broadinstitute.github.io/picard/)

- [UCSC tools](https://pubmed.ncbi.nlm.nih.gov/20639541/)

  > Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D. BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics. 2010 Sep 1;26(17):2204-7. doi: 10.1093/bioinformatics/btq351. Epub 2010 Jul 17. PubMed PMID: 20639541; PubMed Central PMCID: PMC2922891.

## R packages

- [R](https://www.R-project.org/)

  > R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

- [ggplot2](https://cran.r-project.org/web/packages/ggplot2/index.html)

  > Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

- [optparse](https://CRAN.R-project.org/package=optparse)

  > Trevor L Davis (2018). optparse: Command Line Option Parser.

- [Seurat](https://pubmed.ncbi.nlm.nih.gov/34062119/)

  > Hao Y, Hao S, Andersen-Nissen E, Mauck WM, 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LM, Yeung B, Rogers AJ, McElrath JM, Blish CA, Gottardo R, Smibert P, Satija R. Integrated analysis of multimodal single-cell data. Cell 2021 Jun 24; 184(13):3573-87 e29 doi:10.1016/j.cell.2021.04.048. PubMed PMID: 34062119; PubMed Central PMCID: PMC8238499.

## Python libraries

- [Biopython](https://pubmed.ncbi.nlm.nih.gov/19304878/)

  > Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de Hoon MJ. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009 Jun 1; 25(11):1422-3 doi:10.1093/bioinformatics/btp163. PubMed PMID: 19304878; PubMed Central PMCID: PMC2682512.

- [NumPy](https://pubmed.ncbi.nlm.nih.gov/32939066/)

  > Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, Del Rio JF, Wiebe M, Peterson P, Gerard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE. Array programming with NumPy. Nature 2020 Sep; 585(7825):357-62 doi:10.1038/s41586-020-2649-2. PubMed PMID: 32939066; PubMed Central PMCID: PMC7759461.

- [Pandas](https://pandas.pydata.org/)

  > McKinney W. Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in Science Conference 2010. doi: 10.25080/Majora-92bf1922-00a

- [Pysam](https://pysam.readthedocs.io/en/latest/index.html)

## Software packaging/containerisation tools

- [Anaconda](https://anaconda.com)

  > Anaconda Software Distribution. Computer software. Vers. 2-2.4.0. Anaconda, Nov. 2016. Web.

- [Bioconda](https://pubmed.ncbi.nlm.nih.gov/29967506/)

  > Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J; Bioconda Team. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018 Jul;15(7):475-476. doi: 10.1038/s41592-018-0046-7. PubMed PMID: 29967506.

- [BioContainers](https://pubmed.ncbi.nlm.nih.gov/28379341/)

  > da Veiga Leprevost F, Grüning B, Aflitos SA, Röst HL, Uszkoreit J, Barsnes H, Vaudel M, Moreno P, Gatto L, Weber J, Bai M, Jimenez RC, Sachsenberg T, Pfeuffer J, Alvarez RV, Griss J, Nesvizhskii AI, Perez-Riverol Y. BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics. 2017 Aug 15;33(16):2580-2582. doi: 10.1093/bioinformatics/btx192. PubMed PMID: 28379341; PubMed Central PMCID: PMC5870671.

- [Docker](https://dl.acm.org/doi/10.5555/2600239.2600241)

  > Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux Journal, 2014(239), 2. doi: 10.5555/2600239.2600241.

- [Singularity](https://pubmed.ncbi.nlm.nih.gov/28494014/)

  > Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLoS One. 2017 May 11;12(5):e0177459. doi: 10.1371/journal.pone.0177459. eCollection 2017. PubMed PMID: 28494014; PubMed Central PMCID: PMC5426675.

GitHub Events

Total
  • Issues event: 19
  • Watch event: 16
  • Delete event: 2
  • Issue comment event: 106
  • Push event: 37
  • Pull request review event: 39
  • Pull request review comment event: 36
  • Pull request event: 29
  • Fork event: 11
  • Create event: 3
Last Year
  • Issues event: 19
  • Watch event: 16
  • Delete event: 2
  • Issue comment event: 106
  • Push event: 37
  • Pull request review event: 39
  • Pull request review comment event: 36
  • Pull request event: 29
  • Fork event: 11
  • Create event: 3

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 26
  • Total pull requests: 32
  • Average time to close issues: 3 months
  • Average time to close pull requests: 9 days
  • Total issue authors: 9
  • Total pull request authors: 10
  • Average comments per issue: 0.54
  • Average comments per pull request: 1.28
  • Merged pull requests: 16
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 16
  • Pull requests: 20
  • Average time to close issues: about 1 month
  • Average time to close pull requests: 2 days
  • Issue authors: 8
  • Pull request authors: 8
  • Average comments per issue: 0.38
  • Average comments per pull request: 0.5
  • Merged pull requests: 7
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • lianov (8)
  • atrull314 (4)
  • nick-youngblut (4)
  • lauratwomey (3)
  • sme229 (2)
  • CHENAO-QIAN (2)
  • sofiedemeyer (1)
  • wendelljpereira (1)
  • ljwharbers (1)
Pull Request Authors
  • atrull314 (16)
  • nf-core-bot (6)
  • lianov (2)
  • mashehu (2)
  • vecerkovakaterina (2)
  • ljwharbers (2)
  • nick-youngblut (1)
  • dslarm (1)
  • ewels (1)
  • Salome-Brunon (1)
Top Labels
Issue Labels
enhancement (12) bug (10)
Pull Request Labels

Dependencies

.github/workflows/awsfulltest.yml actions
  • actions/upload-artifact v4 composite
  • seqeralabs/action-tower-launch v2 composite
.github/workflows/awstest.yml actions
  • actions/upload-artifact v4 composite
  • seqeralabs/action-tower-launch v2 composite
.github/workflows/branch.yml actions
  • mshick/add-pr-comment b8f338c590a895d50bcbfa6c5859251edc8952fc composite
.github/workflows/ci.yml actions
  • actions/checkout b4ffde65f46336ab88eb53be808477a3936bae11 composite
  • jlumbroso/free-disk-space 54081f138730dfa15788a46383842cd2f914a1be composite
  • nf-core/setup-nextflow v1 composite
.github/workflows/clean-up.yml actions
  • actions/stale 28ca1036281a5e5922ead5184a1bbf96e5fc984e composite
.github/workflows/download_pipeline.yml actions
  • actions/setup-python 0a5c61591373683505ea898e09a3ea4f39ef2b9c composite
  • eWaterCycle/setup-singularity 931d4e31109e875b13309ae1d07c70ca8fbc8537 composite
  • nf-core/setup-nextflow v1 composite
.github/workflows/fix-linting.yml actions
  • actions/checkout b4ffde65f46336ab88eb53be808477a3936bae11 composite
  • actions/setup-python 0a5c61591373683505ea898e09a3ea4f39ef2b9c composite
  • peter-evans/create-or-update-comment 71345be0265236311c031f5c7866368bd1eff043 composite
.github/workflows/linting.yml actions
  • actions/checkout b4ffde65f46336ab88eb53be808477a3936bae11 composite
  • actions/setup-python 0a5c61591373683505ea898e09a3ea4f39ef2b9c composite
  • actions/upload-artifact 5d5d22a31266ced268874388b861e4b58bb5c2f3 composite
  • nf-core/setup-nextflow v1 composite
.github/workflows/linting_comment.yml actions
  • dawidd6/action-download-artifact f6b0bace624032e30a85a8fd9c1a7f8f611f5737 composite
  • marocchino/sticky-pull-request-comment 331f8f5b4215f0445d3c07b4967662a32a2d3e31 composite
.github/workflows/release-announcements.yml actions
  • actions/setup-python 0a5c61591373683505ea898e09a3ea4f39ef2b9c composite
  • rzr/fediverse-action master composite
  • zentered/bluesky-post-action 80dbe0a7697de18c15ad22f4619919ceb5ccf597 composite
modules/nf-core/bamtools/split/meta.yml cpan
modules/nf-core/cat/cat/meta.yml cpan
modules/nf-core/cat/fastq/meta.yml cpan
modules/nf-core/custom/dumpsoftwareversions/meta.yml cpan
modules/nf-core/fastqc/meta.yml cpan
modules/nf-core/multiqc/meta.yml cpan
modules/nf-core/nanoplot/meta.yml cpan
modules/nf-core/rseqc/readdistribution/meta.yml cpan
modules/nf-core/samtools/faidx/meta.yml cpan
modules/nf-core/samtools/flagstat/meta.yml cpan
modules/nf-core/samtools/idxstats/meta.yml cpan
modules/nf-core/samtools/index/meta.yml cpan
modules/nf-core/samtools/merge/meta.yml cpan
modules/nf-core/samtools/sort/meta.yml cpan
modules/nf-core/samtools/stats/meta.yml cpan
modules/nf-core/samtools/view/meta.yml cpan
modules/nf-core/umitools/dedup/meta.yml cpan
subworkflows/nf-core/bam_sort_stats_samtools/meta.yml cpan
subworkflows/nf-core/bam_stats_samtools/meta.yml cpan
subworkflows/nf-core/utils_nextflow_pipeline/meta.yml cpan
subworkflows/nf-core/utils_nfcore_pipeline/meta.yml cpan
modules/nf-core/toulligqc/meta.yml cpan
modules/nf-core/minimap2/align/meta.yml cpan
modules/nf-core/minimap2/index/meta.yml cpan
modules/nf-core/nanocomp/meta.yml cpan
modules/nf-core/pigz/compress/meta.yml cpan
modules/nf-core/pigz/uncompress/meta.yml cpan
modules/nf-core/samtools/faidx/environment.yml conda
  • htslib 1.19.1.*
  • samtools 1.19.2.*
modules/nf-core/samtools/flagstat/environment.yml conda
  • htslib 1.19.1.*
  • samtools 1.19.2.*
modules/nf-core/samtools/idxstats/environment.yml conda
  • htslib 1.19.1.*
  • samtools 1.19.2.*
modules/nf-core/samtools/index/environment.yml conda
  • htslib 1.19.1.*
  • samtools 1.19.2.*
modules/nf-core/samtools/merge/environment.yml conda
  • htslib 1.19.1.*
  • samtools 1.19.2.*
modules/nf-core/samtools/sort/environment.yml conda
  • htslib 1.19.1.*
  • samtools 1.19.2.*
modules/nf-core/samtools/stats/environment.yml conda
  • htslib 1.19.1.*
  • samtools 1.19.2.*
modules/nf-core/samtools/view/environment.yml conda
  • htslib 1.19.1.*
  • samtools 1.19.2.*
modules/nf-core/umitools/dedup/environment.yml conda
  • umi_tools 1.1.5.*
subworkflows/nf-core/utils_nfvalidation_plugin/meta.yml cpan
modules/nf-core/toulligqc/environment.yml pypi
modules/nf-core/bamtools/split/environment.yml conda
  • bamtools 2.5.2.*
modules/nf-core/cat/cat/environment.yml conda
  • pigz 2.3.4.*
modules/nf-core/cat/fastq/environment.yml conda
  • coreutils 8.30.*
modules/nf-core/custom/dumpsoftwareversions/environment.yml conda
  • multiqc 1.20.*
modules/nf-core/fastqc/environment.yml conda
  • fastqc 0.12.1.*
modules/nf-core/minimap2/align/environment.yml conda
  • htslib 1.20.*
  • minimap2 2.28.*
  • samtools 1.20.*
modules/nf-core/minimap2/index/environment.yml conda
  • minimap2 2.28.*
modules/nf-core/multiqc/environment.yml conda
  • multiqc 1.25.*
modules/nf-core/nanocomp/environment.yml conda
  • nanocomp 1.21.0.*
modules/nf-core/nanoplot/environment.yml conda
  • nanoplot 1.41.6.*
modules/nf-core/pigz/compress/environment.yml conda
  • pigz 2.8.*
modules/nf-core/rseqc/readdistribution/environment.yml conda
  • r-base >=3.5
  • rseqc 5.0.3.*