orientedformer
(TGRS 2024) OrientedFormer: An End-to-End Transformer-Based Oriented Object Detector in Remote Sensing Images
Science Score: 49.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 2 DOI reference(s) in README -
✓Academic publication links
Links to: arxiv.org, ieee.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (7.7%) to scientific vocabulary
Keywords
Repository
(TGRS 2024) OrientedFormer: An End-to-End Transformer-Based Oriented Object Detector in Remote Sensing Images
Basic Info
Statistics
- Stars: 35
- Watchers: 2
- Forks: 3
- Open Issues: 3
- Releases: 0
Topics
Metadata Files
README.md
(TGRS 2024) OrientedFormer: An End-to-End Transformer-Based Oriented Object Detector in Remote Sensing Images
Please refer ai4rs ! Our ai4rs integrate remote sensing related work, including newest work on cvpr 2025.
Please refer ai4rs ! Our ai4rs integrate remote sensing related work, including newest work on cvpr 2025.
Please refer ai4rs ! Our ai4rs integrate remote sensing related work, including newest work on cvpr 2025.
The Chinese Version is below (中文版在下面).
Introduction
The paper is officially accepted by IEEE Transactions on Geoscience and Remote Sensing (TGRS 2024).
TGRS paper link https://ieeexplore.ieee.org/document/10669376
arxiv link https://arxiv.org/abs/2409.19648
NEW
✅ ICDAR2015 Dataset in MMRotate-1.x
✅ ICDAR2015 Metric in MMRotate-1.x
✅ ChannelMapperWithGN in MMRotate-1.x
✅ RBBoxL1Cost in MMRotate-1.x
✅ RotatedIoUCost in MMRotate-1.x
✅ TopkHungarianAssigner in MMRotate-1.x
If you like it, please click on star.
Installation
Please refer to Installation for more detailed instruction.
Note: Our codes base on the newest version mmrotate-1.x, not mmrotate-0.x.
Note: All of our codes can be found in path './projects/OrientedFormer/'.
Data Preparation
DOTA and DIOR-R : Please refer to Preparation for more detailed data preparation.
ICDAR2015 : (1) Download ICDAR2015 dataset from official link. (2) The data structure is as follows:
bash
root
├── icdar2015
│ ├── ic15_textdet_train_img
│ ├── ic15_textdet_train_gt
│ ├── ic15_textdet_test_img
│ ├── ic15_textdet_test_gt
Train
1). DIOR-R
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dior.py 2
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_swin-tiny_q300_layer2_head64_point32_1x_dior.py 2
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_lsk_t_q300_layer2_head64_point32_1x_dior.py 2
2). DOTA-v1.0
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.0.py 2
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.0-ms.py 2
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_r101_q300_layer2_head64_point32_1x_dotav1.0.py 2
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_swin-tiny_q300_layer2_head64_point32_1x_dotav1.0.py 2
3). DOTA-v1.5
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.5.py 2
4). DOTA-v2.0
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav2.0.py 2
5). ICDAR2015
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_2x_icdar2015.py 2
Test
1). DIOR-R
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dior.py work_dirs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dior/epoch_12.pth 2
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_swin-tiny_q300_layer2_head64_point32_1x_dior.py work_dirs/orientedformer_le90_swin-tiny_q300_layer2_head64_point32_1x_dior/epoch_12.pth 2
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_lsk_t_q300_layer2_head64_point32_1x_dior.py work_dirs/orientedformer_le90_lsk_t_q300_layer2_head64_point32_1x_dior/epoch_12.pth 2
2). DOTA-v1.0
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.0.py work_dirs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.0/epoch_12.pth 2
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.0-ms.py work_dirs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.0-ms/epoch_12.pth 2
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_r101_q300_layer2_head64_point32_1x_dotav1.0.py work_dirs/orientedformer_le90_r101_q300_layer2_head64_point32_1x_dotav1.0/epoch_12.pth 2
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_swin-tiny_q300_layer2_head64_point32_1x_dotav1.0.py work_dirs/orientedformer_le90_swin-tiny_q300_layer2_head64_point32_1x_dotav1.0/epoch_12.pth 2
Upload results to DOTA official website.
3). DOTA-v1.5
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.5.py work_dirs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.5/epoch_12.pth 2
Upload results to DOTA official website.
4). DOTA-v2.0
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav2.0.py work_dirs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav2.0/epoch_12.pth 2
Upload results to DOTA official website.
5). ICDAR2015
Get result submit.zip
python tools/test.py projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_2x_icdar2015.py work_dirs/orientedformer_le90_r50_q300_layer2_head64_point32_2x_icdar2015/epoch_21.pth
Calculate precision, recall and F-measure. The script.py adapted from official website.
pip install Polygon3
python projects/icdar2015_evaluation/script.py –g=gt.zip –s=submit.zip
Main Result
1). DOTA-v1.0
| Dataset | Configs | Download | AP_50 | AP75 | mAP | Backbone | lr schd | bs | | --------- | -------------------- | ------------------------------------------------------------ | ------------ | --------- | ----------- | -------- | ------- | ---------------- | | DOTA-v1.0 | orientedformerle90r50q300layer2head64point321xdotav1.0.py | Hugging Face | 75.3729 | 46.390216 | 45.0071 | R50 | 12epoch | 2img2 rtx2080ti | | DOTA-v1.0 | orientedformerle90r50q300layer2head64point321xdotav1.0-ms.py | Hugging Face | 79.064371 | 57.463 | 51.891899 | R50 | 12epoch | 2img2 rtx2080ti | | DOTA-v1.0 | orientedformerle90r101q300layer2head64point321xdotav1.0.py | Hugging Face | 75.915958978 | 49.76108 | 47.11829758 | R101 | 12epoch | 2img2 rtx2080ti | | DOTA-v1.0 | orientedformerle90swin-tinyq300layer2head64point321xdotav1.0.py | Hugging Face | 75.8819 | 48.965 | 45.8218 | Swin-T | 12epoch | 2img2 rtx2080ti |
2). DOTA-v1.5
| Dataset | Configs | Download | AP_50 | Backbone | lr schd | bs | | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ----- | -------- | ------- | ---------------- | | DOTA-v1.5 | orientedformerle90r50q300layer2head64point321xdotav1.5.py | Hugging Face | 67.06 | R50 | 12epoch | 2img*2 rtx2080ti |
Due to the limitation of the length of the paper, all categories of AP for DOTA-1.5 are not available in the paper. Here is a list:
| PL | BD | BR | GTF | SV | LV | SH | TC | BC | ST | SBF | RA | HA | SP | HC | CC | AP50 | AP75 | mAP | | ------- | ------- | ------- | ------- | ------- | ------- | ------- | -------- | -------- | --------- | --------- | ------ | --------- | --------- | ------- | --------- | -------- | ------- | -------- | | 72.0444 | 77.4554 | 51.2471 | 64.9538 | 64.0453 | 77.0387 | 85.3310 | 90.83699 | 77.31017 | 78.106886 | 56.103059 | 68.776 | 68.140988 | 72.081567 | 58.6135 | 10.855397 | 67.05879 | 39.2845 | 38.78675 |
3). DOTA-v2.0
| Dataset | Configs | Download | AP_50 | Backbone | lr schd | bs | | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ----- | -------- | ------- | ---------------- | | DOTA-v2.0 | orientedformerle90r50q300layer2head64point321xdotav2.0.py | Hugging Face | 54.27 | R50 | 12epoch | 2img*2 rtx2080ti |
Due to the limitation of the length of the paper, all categories of AP for DOTA-2.0 are not available in the paper. Here is a list:
| PL | BD | BR | GTF | SV | LV | SH | TC | BC | ST | SBF | RA | HA | SP | HC | CC | airport | helipad | AP50 | AP75 | mAP | | ------- | -------- | ---------- | --------- | --------- | -------- | --------- | ------- | ------- | ------- | ------- | --------- | ------- | -------- | -------- | ------ | -------- | ------- | --------- | ---------- | ---------- | | 76.7619 | 51.55655 | 42.3872759 | 60.464159 | 56.482355 | 55.43076 | 66.681058 | 78.6341 | 60.0626 | 69.6894 | 35.0316 | 56.015956 | 51.9962 | 56.20235 | 54.95597 | 24.335 | 67.31572 | 12.9641 | 54.266644 | 28.8561385 | 30.0281367 |
4). DIOR-R
| Dataset | Configs | Download | AP_50 | Backbone | lr schd | bs | | ------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ----- | -------- | ------- | ---------------- | | DIOR-R | orientedformerle90r50q300layer2head64point321xdior.py | Hugging Face | 67.28 | R50 | 12epoch | 2img2 rtx2080ti | | DIOR-R | orientedformerle90swin-tinyq300layer2head64point321xdior.py | Hugging Face | 68.84 | Swin-T | 12epoch | 2img2 rtx2080ti | | DIOR-R | orientedformerle90lsktq300layer2head64point321x_dior.py | Hugging Face | 65.07 | LSK-Net | 12epoch | 2img*2 rtx2080ti |
5). ICDAR-2015
| Dataset | Configs | Download | P | R | F-measure | Backbone | lr schd | bs | | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ---- | ---- | --------- | -------- | ------- | ---------------- | | ICDAR2015 | orientedformerle90r50q300layer2head64point322xicdar2015.py | Hugging Face | 85.3 | 74.2 | 79.4 | R50 | 24epoch | 2img*2 rtx2080ti |
Cite OrientedFormer
@ARTICLE{10669376,
author={Zhao, Jiaqi and Ding, Zeyu and Zhou, Yong and Zhu, Hancheng and Du, Wen-Liang and Yao, Rui and El Saddik, Abdulmotaleb},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={OrientedFormer: An End-to-End Transformer-Based Oriented Object Detector in Remote Sensing Images},
year={2024},
volume={62},
number={},
pages={1-16},
keywords={Encoding;Object detection;Proposals;Detectors;Remote sensing;Current transformers;Position measurement;End-to-end detectors;oriented object detection;positional encoding (PE);remote sensing;transformer},
doi={10.1109/TGRS.2024.3456240}}
(TGRS 2024) OrientedFormer: An End-to-End Transformer-Based Oriented Object Detector in Remote Sensing Images
请参考 ai4rs ! 我们的ai4rs整合了最新遥感相关工作,包括最新的CVPR2025的工作。
请参考 ai4rs ! 我们的ai4rs整合了最新遥感相关工作,包括最新的CVPR2025的工作。
请参考 ai4rs ! 我们的ai4rs整合了最新遥感相关工作,包括最新的CVPR2025的工作。
简介
论文被IEEE Transactions on Geoscience and Remote Sensing (TGRS 2024) 接受。
TGRS官方论文链接 https://ieeexplore.ieee.org/document/10669376
arxiv link https://arxiv.org/abs/2409.19648
新特性:
✅ 数据集工具: ICDAR2015 Dataset in MMRotate-1.x
✅ 数据集工具: ICDAR2015 Metric in MMRotate-1.x
✅ 不用FPN,用channelmapper: ChannelMapperWithGN in MMRotate-1.x
✅ 端到端分配的L1代价矩阵: RBBoxL1Cost in MMRotate-1.x
✅ 端到端分配的IoU代价矩阵: RotatedIoUCost in MMRotate-1.x
✅ Topk匈牙利匹配: TopkHungarianAssigner in MMRotate-1.x
如果喜欢,请点一点小星星收藏。
安装
参考mmrotate-1.x的官方安装教程获取更多安装细节。
注意:代码是基于最新版本的mmrotate-1.x,而不是旧版的mmrotate-0.x。
注意:orientedformer的代码全部在路径'./projects/OrientedFormer/'
数据准备
DOTA and DIOR-R : 请参考mmrotate-1.x官方数据处理对DOTA和DIOR-R的准备方法。
ICDAR2015 : (1) 从官方网站下载 ICDAR2015 数据集。(2) 数据路径结构如下所示:
bash
root
├── icdar2015
│ ├── ic15_textdet_train_img
│ ├── ic15_textdet_train_gt
│ ├── ic15_textdet_test_img
│ ├── ic15_textdet_test_gt
训练
1). DIOR-R
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dior.py 2
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_swin-tiny_q300_layer2_head64_point32_1x_dior.py 2
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_lsk_t_q300_layer2_head64_point32_1x_dior.py 2
2). DOTA-v1.0
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.0.py 2
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.0-ms.py 2
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_r101_q300_layer2_head64_point32_1x_dotav1.0.py 2
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_swin-tiny_q300_layer2_head64_point32_1x_dotav1.0.py 2
3). DOTA-v1.5
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.5.py 2
4). DOTA-v2.0
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav2.0.py 2
5). ICDAR2015
bash
bash tools/dist_train.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_2x_icdar2015.py 2
测试
1). DIOR-R
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dior.py work_dirs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dior/epoch_12.pth 2
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_swin-tiny_q300_layer2_head64_point32_1x_dior.py work_dirs/orientedformer_le90_swin-tiny_q300_layer2_head64_point32_1x_dior/epoch_12.pth 2
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_lsk_t_q300_layer2_head64_point32_1x_dior.py work_dirs/orientedformer_le90_lsk_t_q300_layer2_head64_point32_1x_dior/epoch_12.pth 2
2). DOTA-v1.0
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.0.py work_dirs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.0/epoch_12.pth 2
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.0-ms.py work_dirs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.0-ms/epoch_12.pth 2
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_r101_q300_layer2_head64_point32_1x_dotav1.0.py work_dirs/orientedformer_le90_r101_q300_layer2_head64_point32_1x_dotav1.0/epoch_12.pth 2
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_swin-tiny_q300_layer2_head64_point32_1x_dotav1.0.py work_dirs/orientedformer_le90_swin-tiny_q300_layer2_head64_point32_1x_dotav1.0/epoch_12.pth 2
将结果上传 DOTA官方网站。
3). DOTA-v1.5
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.5.py work_dirs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav1.5/epoch_12.pth 2
将结果上传 DOTA官方网站。
4). DOTA-v2.0
bash
bash tools/dist_test.sh projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav2.0.py work_dirs/orientedformer_le90_r50_q300_layer2_head64_point32_1x_dotav2.0/epoch_12.pth 2
将结果上传 DOTA官方网站。
5). ICDAR2015
得到结果submit.zip
python tools/test.py projects/OrientedFormer/configs/orientedformer_le90_r50_q300_layer2_head64_point32_2x_icdar2015.py work_dirs/orientedformer_le90_r50_q300_layer2_head64_point32_2x_icdar2015/epoch_21.pth
计算precision, recall 和 F-measure
pip install Polygon3
python projects/icdar2015_evaluation/script.py –g=gt.zip –s=submit.zip
主要结果
1). DOTA-v1.0
| Dataset | Configs | Download | AP_50 | AP75 | mAP | Backbone | lr schd | bs | | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------ | --------- | ----------- | -------- | ------- | ---------------- | | DOTA-v1.0 | orientedformerle90r50q300layer2head64point321xdotav1.0.py | Hugging Face | 75.3729 | 46.390216 | 45.0071 | R50 | 12epoch | 2img2 rtx2080ti | | DOTA-v1.0 | orientedformerle90r50q300layer2head64point321xdotav1.0-ms.py | Hugging Face | 79.064371 | 57.463 | 51.891899 | R50 | 12epoch | 2img2 rtx2080ti | | DOTA-v1.0 | orientedformerle90r101q300layer2head64point321xdotav1.0.py | Hugging Face | 75.915958978 | 49.76108 | 47.11829758 | R101 | 12epoch | 2img2 rtx2080ti | | DOTA-v1.0 | orientedformerle90swin-tinyq300layer2head64point321xdotav1.0.py | Hugging Face | 75.8819 | 48.965 | 45.8218 | Swin-T | 12epoch | 2img2 rtx2080ti |
2). DOTA-v1.5
| Dataset | Configs | Download | AP_50 | Backbone | lr schd | bs | | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ----- | -------- | ------- | ---------------- | | DOTA-v1.5 | orientedformerle90r50q300layer2head64point321xdotav1.5.py | Hugging Face | 67.06 | R50 | 12epoch | 2img*2 rtx2080ti |
由于论文长度的限制,论文中没有DOTA-1.5的所有类别的AP,这里列出:
| PL | BD | BR | GTF | SV | LV | SH | TC | BC | ST | SBF | RA | HA | SP | HC | CC | AP50 | AP75 | mAP | | ------- | ------- | ------- | ------- | ------- | ------- | ------- | -------- | -------- | --------- | --------- | ------ | --------- | --------- | ------- | --------- | -------- | ------- | -------- | | 72.0444 | 77.4554 | 51.2471 | 64.9538 | 64.0453 | 77.0387 | 85.3310 | 90.83699 | 77.31017 | 78.106886 | 56.103059 | 68.776 | 68.140988 | 72.081567 | 58.6135 | 10.855397 | 67.05879 | 39.2845 | 38.78675 |
3). DOTA-v2.0
| Dataset | Configs | Download | AP_50 | Backbone | lr schd | bs | | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ----- | -------- | ------- | ---------------- | | DOTA-v2.0 | orientedformerle90r50q300layer2head64point321xdotav2.0.py | Hugging Face | 54.27 | R50 | 12epoch | 2img*2 rtx2080ti |
由于论文长度的限制,论文中没有DOTA-2.0的所有类别的AP,这里列出:
| PL | BD | BR | GTF | SV | LV | SH | TC | BC | ST | SBF | RA | HA | SP | HC | CC | airport | helipad | AP50 | AP75 | mAP | | ------- | -------- | ---------- | --------- | --------- | -------- | --------- | ------- | ------- | ------- | ------- | --------- | ------- | -------- | -------- | ------ | -------- | ------- | --------- | ---------- | ---------- | | 76.7619 | 51.55655 | 42.3872759 | 60.464159 | 56.482355 | 55.43076 | 66.681058 | 78.6341 | 60.0626 | 69.6894 | 35.0316 | 56.015956 | 51.9962 | 56.20235 | 54.95597 | 24.335 | 67.31572 | 12.9641 | 54.266644 | 28.8561385 | 30.0281367 |
4). DIOR-R
| Dataset | Configs | Download | AP_50 | Backbone | lr schd | bs | | ------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ----- | -------- | ------- | ---------------- | | DIOR-R | orientedformerle90r50q300layer2head64point321xdior.py | Hugging Face | 67.28 | R50 | 12epoch | 2img2 rtx2080ti | | DIOR-R | orientedformerle90swin-tinyq300layer2head64point321xdior.py | Hugging Face | 68.84 | Swin-T | 12epoch | 2img2 rtx2080ti | | DIOR-R | orientedformerle90lsktq300layer2head64point321x_dior.py | Hugging Face | 65.07 | LSK-Net | 12epoch | 2img*2 rtx2080ti |
5). ICDAR-2015
| Dataset | Configs | Download | P | R | F-measure | Backbone | lr schd | bs | | --------- | --------------------------------|-----------|----------------- | ------------------------------------------------------------ | ---- | -------- | ------- | ---------------- | | ICDAR2015 | orientedformerle90r50q300layer2head64point322xicdar2015.py | Hugging Face | 85.3 | 74.2 | 79.4 | R50 |24epoch|2img*2 rtx2080ti|
引用 OrientedFormer
@ARTICLE{10669376,
author={Zhao, Jiaqi and Ding, Zeyu and Zhou, Yong and Zhu, Hancheng and Du, Wen-Liang and Yao, Rui and El Saddik, Abdulmotaleb},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={OrientedFormer: An End-to-End Transformer-Based Oriented Object Detector in Remote Sensing Images},
year={2024},
volume={62},
number={},
pages={1-16},
keywords={Encoding;Object detection;Proposals;Detectors;Remote sensing;Current transformers;Position measurement;End-to-end detectors;oriented object detection;positional encoding (PE);remote sensing;transformer},
doi={10.1109/TGRS.2024.3456240}}
Owner
- Login: wokaikaixinxin
- Kind: user
- Repositories: 1
- Profile: https://github.com/wokaikaixinxin
GitHub Events
Total
- Issues event: 4
- Watch event: 24
- Issue comment event: 14
- Push event: 8
- Fork event: 2
Last Year
- Issues event: 4
- Watch event: 24
- Issue comment event: 14
- Push event: 8
- Fork event: 2
Dependencies
- actions/checkout v2 composite
- actions/setup-python v2 composite
- actions/checkout v2 composite
- actions/setup-python v2 composite
- codecov/codecov-action v1.0.14 composite
- actions/checkout v2 composite
- actions/setup-python v2 composite
- actions/checkout v2 composite
- actions/setup-python v1 composite
- actions/checkout v2 composite
- actions/setup-python v2 composite
- pytorch/pytorch ${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel build
- pytorch/pytorch ${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel build
- pytorch/pytorch ${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel build
- cython *
- numpy *
- docutils ==0.16.0
- myst-parser *
- sphinx ==4.0.2
- sphinx-copybutton *
- sphinx_markdown_tables *
- sphinx_rtd_theme ==0.5.2
- mmcv >=2.0.0rc2,<2.1.0
- mmdet >=3.0.0rc2,<3.1.0
- mmengine >=0.1.0
- imagecorruptions *
- scikit-learn *
- scipy *
- e2cnn *
- mmcv >=2.0.0rc2
- mmdet >=3.0.0rc2
- mmengine >=0.1.0
- torch *
- torchvision *
- matplotlib *
- numpy *
- pycocotools *
- six *
- terminaltables *
- torch *
- asynctest * test
- codecov * test
- coverage * test
- cython * test
- flake8 * test
- interrogate * test
- isort ==4.3.21 test
- kwarray * test
- matplotlib * test
- parameterized * test
- pytest * test
- scikit-learn * test
- ubelt * test
- wheel * test
- xdoctest >=0.10.0 test
- yapf * test