memilio

Modular spatio-temporal models for epidemic and pandemic simulations

https://github.com/scicompmod/memilio

Science Score: 39.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 14 DOI reference(s) in README
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (10.4%) to scientific vocabulary

Keywords

computer-science epidemiological-models high-performance-computing mathematical-modelling numerical-methods scientific-computing simulation
Last synced: 6 months ago · JSON representation

Repository

Modular spatio-temporal models for epidemic and pandemic simulations

Basic Info
Statistics
  • Stars: 59
  • Watchers: 7
  • Forks: 18
  • Open Issues: 250
  • Releases: 7
Topics
computer-science epidemiological-models high-performance-computing mathematical-modelling numerical-methods scientific-computing simulation
Created over 4 years ago · Last pushed 6 months ago
Metadata Files
Readme License Code of conduct Citation

README.md

MEmilio - a high performance Modular EpideMIcs simuLatIOn software

memilio_logo

CI codecov

MEmilio implements various models for infectious disease dynamics, from simple compartmental models through Integro-Differential equation-based models to agent- or individual-based models. Its modular design allows the combination of different models with different mobility patterns. Through efficient implementation and parallelization, MEmilio brings cutting edge and compute intensive epidemiological models to a large scale, enabling a precise and high-resolution spatiotemporal infectious disease dynamics. MEmilio will be extended continuously. It is available open-source and we encourage everyone to make use of it.

If you use MEmilio, please cite our work

  • Bicker J, Kerkmann D, Korf S, Plötzke L, Schmieding R, Wendler A, Zunker H et al. (2025) MEmilio - a High Performance Modular Epidemics Simulation Software. Available at https://github.com/SciCompMod/memilio and https://elib.dlr.de/213614/ .

and, in particular, for

  • Ordinary differential equation-based (ODE) and Graph-ODE models: Zunker H, Schmieding R, Kerkmann D, Schengen A, Diexer S, et al. (2024). Novel travel time aware metapopulation models and multi-layer waning immunity for late-phase epidemic and endemic scenarios. PLOS Computational Biology 20(12): e1012630. https://doi.org/10.1371/journal.pcbi.1012630
  • Integro-differential equation-based (IDE) models: Wendler A, Plötzke L, Tritzschak H, Kühn MJ. (2026). A nonstandard numerical scheme for a novel SECIR integro differential equation-based model with nonexponentially distributed stay times. Applied Mathematics and Computation 509: 129636. https://doi.org/10.1016/j.amc.2025.129636
  • Agent-based models (ABMs): Kerkmann D, Korf S, Nguyen K, Abele D, Schengen A, et al. (2025). Agent-based modeling for realistic reproduction of human mobility and contact behavior to evaluate test and isolation strategies in epidemic infectious disease spread. Computers in Biology and Medicine 193: 110269. https://doi.org/10.1016/j.compbiomed.2025.110269
  • Hybrid agent-metapopulation-based models: Bicker J, Schmieding R, Meyer-Hermann M, Kühn MJ. (2025). Hybrid metapopulation agent-based epidemiological models for efficient insight on the individual scale: A contribution to green computing. Infectious Disease Modelling 10(2): 571-590. https://doi.org/10.1016/j.idm.2024.12.015
  • Graph Neural Networks: Schmidt A, Zunker H, Heinlein A, Kühn MJ. (2025). Graph Neural Network Surrogates to leverage Mechanistic Expert Knowledge towards Reliable and Immediate Pandemic Response. Submitted for publication. https://doi.org/10.48550/arXiv.2411.06500
  • ODE-based models with Linear Chain Trick: Plötzke L, Wendler A, Schmieding R, Kühn MJ. (2024). Revisiting the Linear Chain Trick in epidemiological models: Implications of underlying assumptions for numerical solutions. Submitted for publication. https://doi.org/10.48550/arXiv.2412.09140
  • Behavior-based ODE models: Zunker H, Dönges P, Lenz P, Contreras S, Kühn MJ. (2025). Risk-mediated dynamic regulation of effective contacts de-synchronizes outbreaks in metapopulation epidemic models. Chaos, Solitons & Fractals. https://doi.org/10.1016/j.chaos.2025.116782

Getting started

The documentation for MEmilio can be found at https://memilio.readthedocs.io/en/latest/index.html

Publication simulations

Simulations used for publications, along with their specific plotting and processing scripts, are available in a separate repository: https://github.com/SciCompMod/memilio-simulations

Development

The coding guidelines and git workflow description can be found in the documentation at https://memilio.readthedocs.io/en/latest/development.html

Owner

  • Name: SciCompMod
  • Login: SciCompMod
  • Kind: organization

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 249
  • Total pull requests: 214
  • Average time to close issues: 8 months
  • Average time to close pull requests: 3 months
  • Total issue authors: 30
  • Total pull request authors: 26
  • Average comments per issue: 0.47
  • Average comments per pull request: 1.21
  • Merged pull requests: 122
  • Bot issues: 0
  • Bot pull requests: 1
Past Year
  • Issues: 91
  • Pull requests: 89
  • Average time to close issues: 19 days
  • Average time to close pull requests: 14 days
  • Issue authors: 19
  • Pull request authors: 19
  • Average comments per issue: 0.07
  • Average comments per pull request: 0.69
  • Merged pull requests: 46
  • Bot issues: 0
  • Bot pull requests: 1
Top Authors
Issue Authors
  • HenrZu (40)
  • lenaploetzke (37)
  • xsaschako (22)
  • mknaranja (21)
  • MaxBetzDLR (18)
  • reneSchm (16)
  • patricklnz (12)
  • DavidKerkmann (11)
  • jubicker (10)
  • AgathaSchmidt (7)
  • kilianvolmer (7)
  • charlie0614 (6)
  • nijawa (5)
  • dabele (5)
  • khoanguyen-dev (5)
Pull Request Authors
  • HenrZu (41)
  • lenaploetzke (34)
  • reneSchm (24)
  • xsaschako (14)
  • MaxBetzDLR (13)
  • annawendler (11)
  • patricklnz (11)
  • mknaranja (11)
  • jubicker (9)
  • kilianvolmer (8)
  • khoanguyen-dev (7)
  • dabele (7)
  • charlie0614 (5)
  • DavidKerkmann (4)
  • dr2001dlr (2)
Top Labels
Issue Labels
class::improvement (108) loc::backend (106) model::ode (67) class::bug (60) class::feature (54) model::abm (46) prio::moderate (37) model::ide (27) prio::low (23) prio::high (21) class::documentation (21) loc::python interface (19) loc::data handling (15) model::lct (14) class::performance (12) class::discussion (12) loc::infrastructure (11) loc::continuous integration (10) class::research (9) status::in progress (7) model::sde (7) status::in review (6) good first issue (6) model::ml (5) model::hybrid (4) prio::critical (3) status::on hold (3) Epic (2) loc::data analysis (2) prio::vision (1)
Pull Request Labels
loc::backend (20) class::bug (15) class::improvement (13) status::in review (13) model::ide (11) class::feature (9) model::lct (7) model::ode (7) loc::infrastructure (6) class::documentation (6) loc::continuous integration (5) model::abm (5) loc::python interface (5) loc::data handling (4) prio::high (3) prio::moderate (3) status::on hold (3) status::in progress (2) model::sde (2) prio::low (2) dependencies (2) class::performance (1) prio::critical (1) loc::data analysis (1)

Dependencies

.github/actions/build-py/action.yml actions
  • actions/upload-artifact v3 composite
.github/actions/linux-build/action.yml actions
  • actions/upload-artifact v3 composite
.github/actions/linux-test/action.yml actions
  • actions/download-artifact v3 composite
  • actions/upload-artifact v3 composite
.github/actions/test-docs/action.yml actions
  • actions/upload-artifact v3 composite
.github/actions/test-py/action.yml actions
  • actions/download-artifact v3 composite
  • actions/setup-python v4 composite
  • actions/upload-artifact v3 composite
.github/actions/test-pylint/action.yml actions
  • actions/download-artifact v3 composite
  • actions/upload-artifact v3 composite
.github/actions/windows-build/action.yml actions
  • actions/upload-artifact v3 composite
.github/actions/windows-test/action.yml actions
  • actions/download-artifact v3 composite
  • actions/upload-artifact v3 composite
.github/actions/linux-run_examples/action.yml actions
  • actions/download-artifact v3 composite
.github/actions/windows-run_examples/action.yml actions
  • actions/download-artifact v3 composite