skbel

SKBEL - Bayesian Evidential Learning framework built on top of scikit-learn.

https://github.com/robinthibaut/skbel

Science Score: 64.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
  • DOI references
    Found 12 DOI reference(s) in README
  • Academic publication links
    Links to: researchgate.net, wiley.com, zenodo.org
  • Committers with academic emails
    1 of 3 committers (33.3%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (16.3%) to scientific vocabulary

Keywords

bayesian-inference gaussian-process gaussian-process-regression gaussian-processes geology groundwater hydrogeology machine-learning multiple-output-regression multivariate-regression pfa sklearn
Last synced: 6 months ago · JSON representation ·

Repository

SKBEL - Bayesian Evidential Learning framework built on top of scikit-learn.

Basic Info
  • Host: GitHub
  • Owner: robinthibaut
  • License: bsd-3-clause
  • Language: Python
  • Default Branch: main
  • Homepage:
  • Size: 118 MB
Statistics
  • Stars: 24
  • Watchers: 2
  • Forks: 5
  • Open Issues: 1
  • Releases: 6
Topics
bayesian-inference gaussian-process gaussian-process-regression gaussian-processes geology groundwater hydrogeology machine-learning multiple-output-regression multivariate-regression pfa sklearn
Created almost 5 years ago · Last pushed over 1 year ago
Metadata Files
Readme Contributing Funding License Citation

README.rst

.. -*- mode: rst -*-

|Travis|_  |Doc|_ |Black|_ |PythonVersion|_ |PyPi|_ |DOI|_ |Downloads|_

.. |Travis| image:: https://travis-ci.com/robinthibaut/skbel.svg?branch=master
.. _Travis: https://travis-ci.com/robinthibaut/skbel

.. |Doc| image:: https://readthedocs.org/projects/skbel/badge/?version=latest
.. _Doc: https://skbel.readthedocs.io/en/latest/?badge=latest

.. |CodeCov| image:: https://codecov.io/gh/robinthibaut/skbel/branch/main/graph/badge.svg?token=S0T9NW3VK6
.. _CodeCov: https://codecov.io/gh/robinthibaut/skbel

.. |PythonVersion| image:: https://img.shields.io/pypi/pyversions/skbel
.. _PythonVersion: https://img.shields.io/pypi/pyversions/skbel

.. |PyPi| image:: https://badge.fury.io/py/skbel.svg
.. _PyPi: https://badge.fury.io/py/skbel

.. |Black| image:: https://img.shields.io/badge/code%20style-black-000000.svg
.. _Black: https://github.com/psf/black

.. |DOI| image:: https://zenodo.org/badge/369214956.svg
.. _DOI: https://zenodo.org/badge/latestdoi/369214956

.. |Downloads| image:: https://pepy.tech/badge/skbel
.. _Downloads: https://pepy.tech/project/skbel

.. |PythonMinVersion| replace:: 3.7
.. |NumPyMinVersion| replace:: 1.14.6
.. |SciPyMinVersion| replace:: 1.1.0
.. |JoblibMinVersion| replace:: 0.11
.. |MatplotlibMinVersion| replace:: 2.2.2
.. |Scikit-ImageMinVersion| replace:: 0.24.1
.. |PandasMinVersion| replace:: 0.25.0
.. |SeabornMinVersion| replace:: 0.9.0
.. |PytestMinVersion| replace:: 5.0.1

.. image:: https://raw.githubusercontent.com/robinthibaut/skbel/master/docs/img/illu-01.png

**skbel** is a Python module for implementing the Bayesian Evidential Learning framework built on top of
scikit-learn and is distributed under the 3-Clause BSD license.

For more information, read the `documentation `_ and run the example `notebook `_.

Installation
------------

Dependencies
~~~~~~~~~~~~

skbel requires:

- Python (>= |PythonMinVersion|)
- Scikit-Learn (>= |Scikit-ImageMinVersion|)
- NumPy (>= |NumPyMinVersion|)
- SciPy (>= |SciPyMinVersion|)
- joblib (>= |JoblibMinVersion|)

=======

Skbel plotting capabilities require Matplotlib (>= |MatplotlibMinVersion|).

User installation
~~~~~~~~~~~~~~~~~

The easiest way to install skbel is using ``pip``   ::

    pip install skbel


Development
-----------

We welcome new contributors of all experience levels.

Important links
~~~~~~~~~~~~~~~

- Official source code repo: https://github.com/robinthibaut/skbel/
- Download releases: https://pypi.org/project/skbel/
- Issue tracker: https://github.com/robinthibaut/skbel/issues

Source code
~~~~~~~~~~~

You can check the latest sources with the command::

    git clone https://github.com/robinthibaut/skbel.git

Contributing
~~~~~~~~~~~~

Contributors and feedback from users are welcome. Don't hesitate to submit an issue or a PR, or request a new feature.


Testing
~~~~~~~

After installation, you can launch the test suite from outside the source
directory (you will need to have ``pytest`` >= |PyTestMinVersion| installed)::

    pytest skbel


Help and Support
----------------

Documentation
~~~~~~~~~~~~~

- HTML documentation (latest release): https://skbel.readthedocs.io/en/latest/

Communication
~~~~~~~~~~~~~

- Github Discussions: https://github.com/robinthibaut/skbel/discussions

How to cite
----------------

Thibaut, Robin, & Maximilian Ramgraber. (2021). SKBEL - Bayesian Evidential Learning framework built on top of scikit-learn (v2.0.0). Zenodo. https://doi.org/10.5281/zenodo.6205242

BibTeX::

    @software{thibaut_skbel_2021,
    author       = {Thibaut, Robin and Maximilian Ramgraber},
    title        = {{SKBEL} - Bayesian Evidential Learning framework built on top of scikit-learn},
    month        = {9},
    year         = 2021,
    publisher    = {Zenodo},
    version      = {v2.0.0},
    doi          = {10.5281/zenodo.6205242},
    url          = {https://doi.org/10.5281/zenodo.6205242},
    }

Notebooks and tutorials
------------------------

Nolwenn Lesparre, Nicolas Compaire, Thomas Hermans and Robin Thibaut. (2022). 4D Temperature Monitoring with BEL. [Dataset]. Kaggle. doi: 10.34740/kaggle/ds/2275519. url: https://doi.org/10.34740/kaggle/ds/2275519

Thibaut, Robin (2021). WHPA Prediction. [Dataset]. Kaggle. doi:10.34740/kaggle/dsv/2648718. url: https://www.kaggle.com/dsv/2648718

Peer-reviewed publications using SKBEL
--------------------------------------

Thibaut, Robin, Nicolas Compaire, Nolwenn Lesparre, Maximilian Ramgraber, Eric Laloy, and Thomas Hermans (Nov. 2022). “Comparing Well and Geophysical Data for Temperature Monitoring Within a Bayesian Experimental Design Framework”. In: Water Resources Research 58 (11). issn: 0043-1397. doi: 10.1029/2022WR033045. url: https://onlinelibrary.wiley.com/doi/10.1029/2022WR033045.

Thibaut, Robin, Eric Laloy, and Thomas Hermans (Dec. 2021). “A new framework for experimental design using Bayesian Evidential Learning: The case of wellhead protection area”. In: Journal of Hydrology 603, p. 126903. issn: 00221694. doi: 10.1016/j.jhydrol.2021.126903. url: https://linkinghub.elsevier.com/retrieve/pii/S0022169421009537.

Research project
----------------

Logs and results of the research project are available on the `project page `_.


Owner

  • Name: Robin Thibaut
  • Login: robinthibaut
  • Kind: user
  • Location: Salt Lake City
  • Company: Zanskar Geothermal & Minerals

Computation Geoscientist @ Zanskar Geothermal & Minerals. Machine Learning. Experimental Design. Earth Sciences.

Citation (CITATION.cff)

cff-version: 1.1.0
message: "If you use this software, please cite it as below."
authors:
  - family-names: Thibaut
    given-names: Robin
    orcid: https://orcid.org/0000-0001-7556-2700
  - family-names: Ramgraber
    given-names: Maximilian
    orcid: https://orcid.org/0000-0003-3508-6214
title: SKBEL
version: v2.1.0
date-released: 2022-17-05

GitHub Events

Total
  • Watch event: 2
  • Pull request event: 1
Last Year
  • Watch event: 2
  • Pull request event: 1

Committers

Last synced: 10 months ago

All Time
  • Total Commits: 579
  • Total Committers: 3
  • Avg Commits per committer: 193.0
  • Development Distribution Score (DDS): 0.01
Past Year
  • Commits: 2
  • Committers: 1
  • Avg Commits per committer: 2.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
Robin Thibaut r****t@u****e 573
MaxRamgraber 3****r 3
rthibaut r****t@l****v 3
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 0
  • Total pull requests: 3
  • Average time to close issues: N/A
  • Average time to close pull requests: 1 minute
  • Total issue authors: 0
  • Total pull request authors: 3
  • Average comments per issue: 0
  • Average comments per pull request: 0.33
  • Merged pull requests: 2
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 1
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 1
  • Average comments per issue: 0
  • Average comments per pull request: 0.0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
  • allrob23 (2)
  • robinthibaut (1)
  • MaxRamgraber (1)
Top Labels
Issue Labels
Pull Request Labels

Packages

  • Total packages: 2
  • Total downloads:
    • pypi 64 last-month
  • Total dependent packages: 0
    (may contain duplicates)
  • Total dependent repositories: 1
    (may contain duplicates)
  • Total versions: 49
  • Total maintainers: 1
proxy.golang.org: github.com/robinthibaut/skbel
  • Versions: 6
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 6.5%
Average: 6.7%
Dependent repos count: 6.9%
Last synced: 6 months ago
pypi.org: skbel

A set of Python modules to implement the Bayesian Evidential Learning (BEL) framework

  • Versions: 43
  • Dependent Packages: 0
  • Dependent Repositories: 1
  • Downloads: 64 Last month
Rankings
Dependent packages count: 10.1%
Stargazers count: 13.7%
Average: 16.6%
Downloads: 18.7%
Forks count: 19.1%
Dependent repos count: 21.6%
Maintainers (1)
Last synced: 6 months ago

Dependencies

docs/requirements.txt pypi
  • IPython *
  • dataclasses *
  • joblib *
  • matplotlib *
  • nbsphinx *
  • numpy *
  • pandas *
  • pytest *
  • readthedocs-sphinx-search *
  • scikit-learn *
  • scipy *
  • seaborn *
  • sphinx *
  • sphinx_rtd_theme *
  • sphinxcontrib_bibtex *
.github/workflows/coverage.yml actions
  • actions/checkout main composite
  • codecov/codecov-action v1 composite
requirements.txt pypi
  • joblib *
  • matplotlib *
  • numpy *
  • pandas *
  • pytest *
  • scikit-image *
  • scikit-learn *
  • scipy *
  • tensorflow *
  • tensorflow_probability *
setup.py pypi
  • joblib *
  • matplotlib *
  • numpy *
  • pandas *
  • pytest *
  • scikit-image *
  • scikit-learn *
  • scipy *