pyrddlgym-gurobi

Gurobi compilation of RDDL description files to mixed-integer programs, and optimization tools.

https://github.com/pyrddlgym-project/pyrddlgym-gurobi

Science Score: 44.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (14.5%) to scientific vocabulary

Keywords

control controller gurobi gurobi-optimization gurobipy mixed-integer-nonlinear-programming mixed-integer-programming model-based model-based-control nonlinear-control nonlinear-optimization nonlinear-programming planner planners planning planning-algorithms planning-domain-definition-language rddl rddl-domains
Last synced: 4 months ago · JSON representation ·

Repository

Gurobi compilation of RDDL description files to mixed-integer programs, and optimization tools.

Basic Info
Statistics
  • Stars: 1
  • Watchers: 2
  • Forks: 1
  • Open Issues: 0
  • Releases: 2
Topics
control controller gurobi gurobi-optimization gurobipy mixed-integer-nonlinear-programming mixed-integer-programming model-based model-based-control nonlinear-control nonlinear-optimization nonlinear-programming planner planners planning planning-algorithms planning-domain-definition-language rddl rddl-domains
Created almost 2 years ago · Last pushed 10 months ago
Metadata Files
Readme License Citation

README.md

pyRDDLGym-gurobi

Python Version PyPI Version Documentation Status License: MIT Cumulative PyPI Downloads

Installation | Basic Example | Running Python | Configuration | Citing

Supports compilation of RDDL description files into Gurobi mixed-integer (non-linear) programs, and automated planning tools for optimizing these programs in MDPs.

[!NOTE]
The Gurobi planners currently determinize all stochastic variables, making it less suitable for highly stochastic problems or problems with (stochastic) dead ends. If you find it is not making sufficient progress on a stochastic problem, or doesn't scale well computationally to your problem, check out the PROST planner (for discrete spaces), the JAX planner (for continuous problems), or the deep reinforcement learning wrappers.

Installation

The basic requirements are pyRDDLGym>=2.0 and gurobipy>=10.0.0. To run the basic example, you will also require rddlrepository>=2.0. Everything except rddlrepository can be installed via pip:

shell pip install pyRDDLGym-gurobi

Running the Basic Example

The basic example provided in pyRDDLGym-gurobi will run the Gurobi planner on a domain and instance of your choosing. To run this, navigate to the install directory of pyRDDLGym-gurobi, and run:

shell python -m pyRDDLGym_gurobi.examples.run_plan <domain> <instance>

where: - <domain> is the domain identifier as specified in rddlrepository (i.e. WildfireMDPippc2014), or a path pointing to a valid domain.rddl file - <instance> instance is the instance identifier (i.e. 1, 2, ... 10) in rddlrepository, or a path pointing to a valid instance.rddl file

Running from the Python API

If you are working with the Python API, you can instantiate the environment and planner however you wish:

```python import pyRDDLGym from pyRDDLGym_gurobi.core.planner import GurobiStraightLinePlan, GurobiOnlineController

Create the environment

env = pyRDDLGym.make("domain name", "instance name")

Create the planner

plan = GurobiStraightLinePlan() controller = GurobiOnlineController(rddl=env.model, plan=plan, rollout_horizon=5)

Run the planner

controller.evaluate(env, episodes=1, verbose=True, render=True) ```

Note, that the GurobiOnlineController is an instance of pyRDDLGym's BaseAgent, so the evaluate() function can be used to streamline interaction with the environment.

Configuring pyRDDLGym-gurobi

The recommended way to manage planner settings is to write a configuration file with all the necessary hyper-parameters, which follows the same general format as for the JAX planner. Below is the basic structure of a configuration file for straight-line planning:

```shell [Gurobi] NonConvex=2 OutputFlag=0

[Optimizer] method='GurobiStraightLinePlan' methodkwargs={} rollouthorizon=5 verbose=1 ```

The configuration file can then be parsed and passed to the planner as follows:

```python import os from pyRDDLGymgurobi.core.planner import loadconfig

load the config

abspath = os.path.dirname(os.path.abspath(file)) configpath = os.path.join(abspath, 'default.cfg') controllerkwargs = loadconfig(configpath)

pass the parameters to the controller and proceed as usual

controller = GurobiOnlineController(rddl=env.model, **controller_kwargs) ... ```

Citing pyRDDLGym-gurobi

The following citation describes the main ideas of the framework. Please cite it if you found it useful:

``` @inproceedings{gimelfarb2024jaxplan, title={JaxPlan and GurobiPlan: Optimization Baselines for Replanning in Discrete and Mixed Discrete and Continuous Probabilistic Domains}, author={Michael Gimelfarb and Ayal Taitler and Scott Sanner}, booktitle={34th International Conference on Automated Planning and Scheduling}, year={2024}, url={https://openreview.net/forum?id=7IKtmUpLEH} }

Owner

  • Name: pyrddlgym-project
  • Login: pyrddlgym-project
  • Kind: organization

The official pyRDDLGym Simulator, and everything RDDL related

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Gimelfarb"
  given-names: "Michael"
title: "pyRDDLGym-gurobi"
version: 1.0
date-released: 2024-01-01
preferred-citation:
  type: conference-paper
  authors:
  - family-names: "Gimelfarb"
    given-names: "Michael"
  - family-names: "Taitler"
    given-names: "Ayal"
  - family-names: "Sanner"
    given-names: "Scott"
  title: "JaxPlan and GurobiPlan: Optimization Baselines for Replanning in Discrete and Mixed Discrete and Continuous Probabilistic Domains"
  journal: "Proceedings of the International Conference on Automated Planning and Scheduling"
  url: "https://openreview.net/forum?id=7IKtmUpLEH"
  month: 5
  day: 30
  year: 2024
  volume: 34
  start: 230
  end: 238

GitHub Events

Total
  • Create event: 4
  • Release event: 2
  • Issues event: 2
  • Watch event: 1
  • Issue comment event: 2
  • Push event: 19
  • Pull request event: 3
Last Year
  • Create event: 4
  • Release event: 2
  • Issues event: 2
  • Watch event: 1
  • Issue comment event: 2
  • Push event: 19
  • Pull request event: 3

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 1,055 last-month
  • Total dependent packages: 0
  • Total dependent repositories: 0
  • Total versions: 2
  • Total maintainers: 1
pypi.org: pyrddlgym-gurobi

pyRDDLGym-gurobi: Gurobi compilation of RDDL description files, and optimization tools.

  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 1,055 Last month
Rankings
Dependent packages count: 10.1%
Forks count: 32.0%
Average: 35.2%
Stargazers count: 41.7%
Dependent repos count: 56.9%
Maintainers (1)
Last synced: 5 months ago

Dependencies

requirements.txt pypi
  • gurobipy >=10.0.0
  • numpy >=1.22,
  • pyRDDLGym >=2.0.0
setup.py pypi
  • gurobipy >=10.0.0
  • numpy >=1.22
  • pyRDDLGym >=2.0.0