ha-rdet

Hybrid-Anchor Rotation Detector for Oriented Object Detection (ICCV'25-SEA)

https://github.com/phucnda/ha-rdet

Science Score: 36.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (11.8%) to scientific vocabulary

Keywords

iccv2025 object-detection oriented-object-detection remote-sensing
Last synced: 6 months ago · JSON representation

Repository

Hybrid-Anchor Rotation Detector for Oriented Object Detection (ICCV'25-SEA)

Basic Info
  • Host: GitHub
  • Owner: PhucNDA
  • License: apache-2.0
  • Language: Python
  • Default Branch: main
  • Homepage:
  • Size: 123 MB
Statistics
  • Stars: 14
  • Watchers: 1
  • Forks: 1
  • Open Issues: 0
  • Releases: 0
Topics
iccv2025 object-detection oriented-object-detection remote-sensing
Created over 3 years ago · Last pushed 7 months ago
Metadata Files
Readme Contributing License Citation

README.md

# Hybrid-Anchor Rotation Detector for Oriented Object Detection - [ICCV'25 (SEA)](https://www.linkedin.com/posts/phucnda_iccv2025-deeplearning-computervision-activity-7349386783173812224-nZHk?utm_source=share&utm_medium=member_desktop&rcm=ACoAADbLioEBJomPC4X7mN_v9mBOCit95xQySik)

Project Page

image

Introduction

Oriented object detection in aerial images poses a significant challenge due to their varying sizes and orientations. Current state-of-the-art detectors typically rely on either two-stage or one-stage approaches, often employing Anchor-based strategies, which can result in computationally expensive operations due to the redundant number of generated anchors during training. In contrast, Anchor-free mechanisms offer faster processing but suffer from a reduction in the number of training samples, potentially impacting detection accuracy. To address these limitations, we propose the Hybrid-Anchor Rotation Detector (HA-RDet), which combines the advantages of both anchor-based and anchor-free schemes for oriented object detection. By utilizing only one preset anchor for each location on the feature maps and refining these anchors with our Orientation-Aware Convolution technique, HA-RDet achieves competitive accuracies, including 75.41 mAP on DOTA-v1, 65.3 mAP on DIOR-R, and 90.2 mAP on HRSC2016, against current anchor-based state-of-the-art methods, while significantly reducing computational resources.

Installation

Data preparation and download * DOTA-v1.0: download * HRSC2016: download * DIOR-R: download

HA-RDet mmrotate tools configs data split_ss_dota trainval annfiles images test annfiles images DIOR-R trainval test HRSC ImageSets FullDataSets

Our experiment relies on the MMRotate framework provided by Open MMLab. MMRotate depends on PyTorch, MMCV and MMDetection. Quick steps for installation follows as:

  • Git clone

git clone https://github.com/PhucNDA/HA-RDet

  • Environment setup

conda create -n [NAME] python=3.7 pytorch==1.7.0 cudatoolkit=10.1 torchvision -c pytorch -y conda activate [NAME] pip install openmim mim install mmcv-full mim install mmdet cd 'Hybrid-Anchor-Rotation-Detector' pip install -r requirements/build.txt pip install -v -e .

Training and Inference

  • Training command:

``` python tools/train.py ${CONFIG_FILE} [optional arguments]

Example:

python tools/train.py configs/hardet/hardetbaseliner50fpn1xdota_le90.py ```

  • Inference command for online submission: python ./tools/test.py \ configs/ha_rdet/hardet_baseline_r50_fpn_1x_dota_le90.py \ checkpoints/SOME_CHECKPOINT.pth --format-only \ --eval-options submission_dir=[SAVE_FOLDER]

  • Visualize the results python ./tools/test.py \ configs/ha_rdet/hardet_baseline_r50_fpn_1x_dota_le90.py \ checkpoints/SOME_CHECKPOINT.pth --show-dir [SAVE_FOLDER]

Benchmark and Model Zoo

DOTA-v1.0 dataset

| Model | Backbone | #anchors | VRAM (GB) | #params | FPS | mAP | Config | Download | | ------ |:-------------:|:----------------------:|:-----------------------------------------------------:|:-------------------------:|:----:|:----:|:---:|:--:| | S2A-Net| ResNet50+FPN | 1 | 4.6 | ~39M | 15.5 | 74.19 | - | - | | Oriented R-CNN| ResNet50+FPN | 20 | 14.2 | ~41M | 13.5 | 75.69 | - | - | | HA-RDet (ours) | ResNet50+FPN | 1 | 6.8 | ~56M | 12.1 | 75.41 | config | model / log | | HA-RDet (ours) | ResNet101+FPN | 1 | - | - | - | 76.02 | config | model / log | | HA-RDet (ours) | ResNeXt101DCNv2+FPN | 1 | - | - | - | 77.012 | <a href="https://github.com/PhucNDA/HA-RDet/blob/main/configs/hardet/hardetbaselinerx101dcnfpn1xdotale90.py">config | <a href="https://drive.google.com/file/d/129jCteJpW-13MxClbZP7eHuRY9HJPTH/view?usp=drivelink">model / <a href="https://github.com/PhucNDA/HA-RDet/blob/main/logs/hardetbaselinerx101dcnfpn1xdotale90.txt">log |

HRSC2016

| Model | Backbone | #anchors | mAP (VOC 07) | mAP (VOC 12) | |:-----:|:--------:|:-------:|:-------:|:-------:| | S2A-Net | ResNet101+FPN | 1 | 90.17 | 95.01 | | AOPG | ResNet101+FPN | 1 | 90.34 | 96.22 | | HA-RDet (ours) | ResNeXt101_DCNv2+FPN | 1 | 90.2 | 95.32 |

DIOR-R

| Model | Backbone | mAP | |:-----:|:--------:|:---:| | HA-RDet | ResNeXt101_DCNv2+FPN | 65.3 |

Visualization

|image|image|image| |-|-|-| |image|image|image| |image|image|image|

Owner

  • Name: Nguyen Duc Anh Phuc
  • Login: PhucNDA
  • Kind: user
  • Location: Ho Chi Minh City, Vietnam
  • Company: VinAI Research

My email: phucnda@gmail.com

GitHub Events

Total
  • Watch event: 5
  • Push event: 3
  • Fork event: 2
Last Year
  • Watch event: 5
  • Push event: 3
  • Fork event: 2