ha-rdet
Hybrid-Anchor Rotation Detector for Oriented Object Detection (ICCV'25-SEA)
Science Score: 36.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
✓Academic publication links
Links to: arxiv.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (11.8%) to scientific vocabulary
Keywords
Repository
Hybrid-Anchor Rotation Detector for Oriented Object Detection (ICCV'25-SEA)
Basic Info
Statistics
- Stars: 14
- Watchers: 1
- Forks: 1
- Open Issues: 0
- Releases: 0
Topics
Metadata Files
README.md
Project Page

Introduction
Oriented object detection in aerial images poses a significant challenge due to their varying sizes and orientations. Current state-of-the-art detectors typically rely on either two-stage or one-stage approaches, often employing Anchor-based strategies, which can result in computationally expensive operations due to the redundant number of generated anchors during training. In contrast, Anchor-free mechanisms offer faster processing but suffer from a reduction in the number of training samples, potentially impacting detection accuracy. To address these limitations, we propose the Hybrid-Anchor Rotation Detector (HA-RDet), which combines the advantages of both anchor-based and anchor-free schemes for oriented object detection. By utilizing only one preset anchor for each location on the feature maps and refining these anchors with our Orientation-Aware Convolution technique, HA-RDet achieves competitive accuracies, including 75.41 mAP on DOTA-v1, 65.3 mAP on DIOR-R, and 90.2 mAP on HRSC2016, against current anchor-based state-of-the-art methods, while significantly reducing computational resources.
Installation
Data preparation and download * DOTA-v1.0: download * HRSC2016: download * DIOR-R: download
HA-RDet
mmrotate
tools
configs
data
split_ss_dota
trainval
annfiles
images
test
annfiles
images
DIOR-R
trainval
test
HRSC
ImageSets
FullDataSets
Our experiment relies on the MMRotate framework provided by Open MMLab. MMRotate depends on PyTorch, MMCV and MMDetection. Quick steps for installation follows as:
- Git clone
git clone https://github.com/PhucNDA/HA-RDet
- Environment setup
conda create -n [NAME] python=3.7 pytorch==1.7.0 cudatoolkit=10.1 torchvision -c pytorch -y
conda activate [NAME]
pip install openmim
mim install mmcv-full
mim install mmdet
cd 'Hybrid-Anchor-Rotation-Detector'
pip install -r requirements/build.txt
pip install -v -e .
Training and Inference
- Training command:
``` python tools/train.py ${CONFIG_FILE} [optional arguments]
Example:
python tools/train.py configs/hardet/hardetbaseliner50fpn1xdota_le90.py ```
Inference command for online submission:
python ./tools/test.py \ configs/ha_rdet/hardet_baseline_r50_fpn_1x_dota_le90.py \ checkpoints/SOME_CHECKPOINT.pth --format-only \ --eval-options submission_dir=[SAVE_FOLDER]Visualize the results
python ./tools/test.py \ configs/ha_rdet/hardet_baseline_r50_fpn_1x_dota_le90.py \ checkpoints/SOME_CHECKPOINT.pth --show-dir [SAVE_FOLDER]
Benchmark and Model Zoo
DOTA-v1.0 dataset
| Model | Backbone | #anchors | VRAM (GB) | #params | FPS | mAP | Config | Download | | ------ |:-------------:|:----------------------:|:-----------------------------------------------------:|:-------------------------:|:----:|:----:|:---:|:--:| | S2A-Net| ResNet50+FPN | 1 | 4.6 | ~39M | 15.5 | 74.19 | - | - | | Oriented R-CNN| ResNet50+FPN | 20 | 14.2 | ~41M | 13.5 | 75.69 | - | - | | HA-RDet (ours) | ResNet50+FPN | 1 | 6.8 | ~56M | 12.1 | 75.41 | config | model / log | | HA-RDet (ours) | ResNet101+FPN | 1 | - | - | - | 76.02 | config | model / log | | HA-RDet (ours) | ResNeXt101DCNv2+FPN | 1 | - | - | - | 77.012 | <a href="https://github.com/PhucNDA/HA-RDet/blob/main/configs/hardet/hardetbaselinerx101dcnfpn1xdotale90.py">config | <a href="https://drive.google.com/file/d/129jCteJpW-13MxClbZP7eHuRY9HJPTH/view?usp=drivelink">model / <a href="https://github.com/PhucNDA/HA-RDet/blob/main/logs/hardetbaselinerx101dcnfpn1xdotale90.txt">log |
HRSC2016
| Model | Backbone | #anchors | mAP (VOC 07) | mAP (VOC 12) | |:-----:|:--------:|:-------:|:-------:|:-------:| | S2A-Net | ResNet101+FPN | 1 | 90.17 | 95.01 | | AOPG | ResNet101+FPN | 1 | 90.34 | 96.22 | | HA-RDet (ours) | ResNeXt101_DCNv2+FPN | 1 | 90.2 | 95.32 |
DIOR-R
| Model | Backbone | mAP | |:-----:|:--------:|:---:| | HA-RDet | ResNeXt101_DCNv2+FPN | 65.3 |
Visualization
|
|
|
|
|-|-|-|
|
|
|
|
|
|
|
|
Owner
- Name: Nguyen Duc Anh Phuc
- Login: PhucNDA
- Kind: user
- Location: Ho Chi Minh City, Vietnam
- Company: VinAI Research
- Repositories: 1
- Profile: https://github.com/PhucNDA
My email: phucnda@gmail.com
GitHub Events
Total
- Watch event: 5
- Push event: 3
- Fork event: 2
Last Year
- Watch event: 5
- Push event: 3
- Fork event: 2