Science Score: 54.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (10.1%) to scientific vocabulary

Scientific Fields

Mathematics Computer Science - 88% confidence
Sociology Social Sciences - 64% confidence
Artificial Intelligence and Machine Learning Computer Science - 64% confidence
Last synced: 4 months ago · JSON representation ·

Repository

Basic Info
  • Host: GitHub
  • Owner: wchao0601
  • License: agpl-3.0
  • Language: Python
  • Default Branch: master
  • Size: 29.7 MB
Statistics
  • Stars: 15
  • Watchers: 1
  • Forks: 0
  • Open Issues: 1
  • Releases: 0
Created 8 months ago · Last pushed 5 months ago
Metadata Files
Readme Contributing License Citation

README.md

M4-SAR: A Multi-Resolution, Multi-Polarization, Multi-Scene, Multi-Source Dataset and Benchmark for Optical-SAR Fusion Object Detection

2025

Examples of scenes and categories in the proposed M4-SAR dataset.

Statistical visualization of category attributes in M4-SAR dataset.

Overall Framework.

Architectural details of the proposed FAM, CMIM, and AFM modules.

Usage

Installation

Create and activate a conda environment: conda create -n e2e-osdet python=3.11 conda activate e2e-osdet Install the required packages: git clone https://github.com/wchao0601/M4-SAR.git cd M4-SAR/ pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118 pip install seaborn thop timm einops cd STTrack/mamba_install/causal-conv1d CAUSAL_CONV1D_FORCE_BUILD=TRUE pip install . cd ../selective_scan pip install . cd M4-SAR/ pip install -r requirements.txt We provide a complete environment configuration log for your reference.

Optical and SAR Attributes by File Range

| File Range | Optical Image Resolution | SAR Image Polarization | |:---:|:---:|:---:| | 1.jpg ~ 56087.jpg | 10 meters | VH | | 56088.jpg ~ 112174.jpg | 60 meters | VV |

Data Preparation

| Dataset | Link1 | Link2 | Link3 | SR & Pola. | Image Size | Category | Ins.num | Img.num | | :---: | :---: | :---: | :---: | :---:| :---: | :---: | :---: | :---: | | M4-SAR | Kaggle|Baidu|Hug-Face|10M, 60M, VH, VV|512 x 512|6|981,862|112,174|

Dataset and Label Structure

Single-GPU Train

```python

please set 'device=0' in train.py

python train.py ```

Multi-GPU Train

```python

please set 'device=[0,1]' in train.py

python multigpu-train.py ```

Test

python python test.py

Gen-Predict

python python gen-predict-label.py

Vis-Predict

python python vis-predict-label.py

Gen-Heatmap

python python gen-heatmap.py

Results

| Model |Weight Link | Img size (pixels) | #Para(M) | Tra.Time (h) | Inf.Time (ms) | AP50 (%) | AP75 (%) | mAP (%) | | :---: | :---: | :---:| :---: | :---: | :---: | :---: | :---: | :---: | | CFT |Download | 512 x 512 | 53.8 | 60.6 | 40.6 | 84.6 | 68.9 | 59.9 | | CLANet |Download | 512 x 512 | 48.2 | 56.2 | 29.1 | 84.6 | 68.5 | 59.6 | | CSSA |Download | 512 x 512 | 13.5 | 25.7 | 12.3 | 83.4 | 66.4 | 58.0 | | CMADet |Download | 512 x 512 | 41.5 | 52.4 | 46.7 | 81.5 | 63.5 | 55.7 | | ICAFusion |Download | 512 x 512 | 29.0 | 47.7 | 23.6 | 84.5 | 67.3 | 58.8 | | MMIDet |Download | 512 x 512 | 53.8 | 49.9 | 41.9 | 84.8 | 68.6 | 59.8 | | E2E-OSDet |Download | 512 x 512 | 27.5 | 42.1 | 20.9 | 85.7 | 70.3 | 61.4 |

All weights

Google Drive

Contact

If you have any questions, please feel free to contact me via email at wchao0601@163.com

Citation

If our work is helpful, you can cite our paper: ``` @article{wang2025m4, title={M4-SAR: A Multi-Resolution, Multi-Polarization, Multi-Scene, Multi-Source Dataset and Benchmark for Optical-SAR Fusion Object Detection}, author={Wang, Chao and Lu, Wei and Li, Xiang and Yang, Jian and Luo, Lei}, journal={arXiv preprint arXiv:2505.10931}, year={2025} }

```

Acknowledgment

Owner

  • Login: wchao0601
  • Kind: user

Citation (CITATION.cff)

# This CITATION.cff file was generated with https://bit.ly/cffinit

cff-version: 1.0.0
title: E2E-OSDet
message: >-
  If you use this software, please cite it using the
  metadata from this file.
type: software
authors:
  - given-names: Chao
    family-names: Wang
  - family-names: Wei
    given-names: Lu
  - given-names: Xiang
    family-names: Li
  - given-names: Lei
    family-names: Luo
repository-code: 'https://github.com/wchao0601/M4-SAR'
license: AGPL-3.0
version: 1.0.0
date-released: '2025.05.23'

GitHub Events

Total
  • Issues event: 9
  • Watch event: 13
  • Issue comment event: 13
  • Push event: 15
Last Year
  • Issues event: 9
  • Watch event: 13
  • Issue comment event: 13
  • Push event: 15

Dependencies

examples/YOLOv8-ONNXRuntime-Rust/Cargo.toml cargo
STTrack/mamba_install/causal-conv1d/causal_conv1d.egg-info/requires.txt pypi
  • ninja *
  • packaging *
  • torch *
STTrack/mamba_install/causal-conv1d/setup.py pypi
  • ninja *
  • packaging *
  • torch *
STTrack/mamba_install/mamba-1p1p1/setup.py pypi
  • causal_conv1d >=1.1.0
  • einops *
  • ninja *
  • packaging *
  • torch *
  • transformers *
  • triton *
STTrack/mamba_install/selective_scan/selective_scan.egg-info/requires.txt pypi
  • einops *
  • ninja *
  • packaging *
  • torch *
STTrack/mamba_install/selective_scan/setup.py pypi
  • einops *
  • ninja *
  • packaging *
  • torch *
examples/YOLOv8-Action-Recognition/requirements.txt pypi
  • transformers *
  • ultralytics *
requirements.txt pypi
  • PyWavelets ==1.8.0
  • PyYAML ==6.0.1
  • appdirs ==1.4.4
  • configparser ==7.1.0
  • grad-cam ==1.5.5
  • huggingface-hub ==0.23.3
  • joblib ==1.4.2
  • kymatio ==0.3.0
  • numpy ==1.26.3
  • opencv-python ==4.10.0.82
  • pandas ==2.2.2
  • pillow ==10.2.0
  • psutil ==5.9.8
  • ptflops ==0.7.4
  • py-cpuinfo ==9.0.0
  • pyparsing ==3.1.2
  • python-dateutil ==2.9.0.post0
  • pytz ==2024.1
  • requests ==2.28.1
  • safetensors ==0.4.3
  • scikit-learn ==1.6.1
  • scipy ==1.13.1
  • seaborn ==0.13.2
  • shapely ==2.0.4
  • six ==1.16.0
  • sympy ==1.12
  • thop ==0.1.1.post2209072238
  • threadpoolctl ==3.6.0
  • timm ==1.0.3
  • torchdiffeq ==0.2.5
  • torchhaarfeatures ==0.0.2
  • torchinfo ==1.8.0
  • ttach ==0.0.3
  • typing_extensions ==4.9.0
  • tzdata ==2024.1
  • ultralytics-thop ==0.2.8
  • urllib3 ==1.26.13
environment.yml pypi
  • appdirs ==1.4.4
  • certifi ==2022.12.7
  • charset-normalizer ==2.1.1
  • configparser ==7.1.0
  • contourpy ==1.2.1
  • cycler ==0.12.1
  • einops ==0.8.0
  • filelock ==3.13.1
  • fonttools ==4.53.0
  • fsspec ==2024.2.0
  • grad-cam ==1.5.5
  • huggingface-hub ==0.23.3
  • idna ==3.4
  • jinja2 ==3.1.3
  • joblib ==1.4.2
  • kiwisolver ==1.4.5
  • kymatio ==0.3.0
  • markupsafe ==2.1.5
  • matplotlib ==3.9.0
  • mpmath ==1.3.0
  • networkx ==3.2.1
  • ninja ==1.11.1.1
  • numpy ==1.26.3
  • opencv-python ==4.10.0.82
  • packaging ==23.2
  • pandas ==2.2.2
  • pillow ==10.2.0
  • pip ==24.0
  • psutil ==5.9.8
  • ptflops ==0.7.4
  • py-cpuinfo ==9.0.0
  • pyparsing ==3.1.2
  • python-dateutil ==2.9.0.post0
  • pytz ==2024.1
  • pywavelets ==1.8.0
  • pyyaml ==6.0.1
  • requests ==2.28.1
  • safetensors ==0.4.3
  • scikit-learn ==1.6.1
  • scipy ==1.13.1
  • seaborn ==0.13.2
  • selective-scan ==0.0.2
  • setuptools ==69.5.1
  • shapely ==2.0.4
  • six ==1.16.0
  • sympy ==1.12
  • thop ==0.1.1
  • threadpoolctl ==3.6.0
  • timm ==1.0.3
  • torch ==2.1.1
  • torchaudio ==2.1.1
  • torchdiffeq ==0.2.5
  • torchhaarfeatures ==0.0.2
  • torchinfo ==1.8.0
  • torchvision ==0.16.1
  • tqdm ==4.66.4
  • triton ==2.1.0
  • ttach ==0.0.3
  • typing-extensions ==4.9.0
  • tzdata ==2024.1
  • ultralytics ==8.2.29
  • ultralytics-thop ==0.2.8
  • urllib3 ==1.26.13
  • wheel ==0.43.0