diffusers_20250422
Science Score: 44.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (14.2%) to scientific vocabulary
Scientific Fields
Repository
Basic Info
- Host: GitHub
- Owner: crapthings
- License: apache-2.0
- Language: Python
- Default Branch: main
- Size: 7.02 MB
Statistics
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
- Releases: 0
Metadata Files
README.md
🤗 Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, 🤗 Diffusers is a modular toolbox that supports both. Our library is designed with a focus on usability over performance, simple over easy, and customizability over abstractions.
🤗 Diffusers offers three core components:
- State-of-the-art diffusion pipelines that can be run in inference with just a few lines of code.
- Interchangeable noise schedulers for different diffusion speeds and output quality.
- Pretrained models that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems.
Installation
We recommend installing 🤗 Diffusers in a virtual environment from PyPI or Conda. For more details about installing PyTorch and Flax, please refer to their official documentation.
PyTorch
With pip (official package):
bash
pip install --upgrade diffusers[torch]
With conda (maintained by the community):
sh
conda install -c conda-forge diffusers
Flax
With pip (official package):
bash
pip install --upgrade diffusers[flax]
Apple Silicon (M1/M2) support
Please refer to the How to use Stable Diffusion in Apple Silicon guide.
Quickstart
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the from_pretrained method to load any pretrained diffusion model (browse the Hub for 30,000+ checkpoints):
```python from diffusers import DiffusionPipeline import torch
pipeline = DiffusionPipeline.frompretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torchdtype=torch.float16) pipeline.to("cuda") pipeline("An image of a squirrel in Picasso style").images[0] ```
You can also dig into the models and schedulers toolbox to build your own diffusion system:
```python from diffusers import DDPMScheduler, UNet2DModel from PIL import Image import torch
scheduler = DDPMScheduler.frompretrained("google/ddpm-cat-256") model = UNet2DModel.frompretrained("google/ddpm-cat-256").to("cuda") scheduler.set_timesteps(50)
samplesize = model.config.samplesize noise = torch.randn((1, 3, samplesize, samplesize), device="cuda") input = noise
for t in scheduler.timesteps: with torch.nograd(): noisyresidual = model(input, t).sample prevnoisysample = scheduler.step(noisyresidual, t, input).prevsample input = prevnoisysample
image = (input / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy()[0] image = Image.fromarray((image * 255).round().astype("uint8")) image ```
Check out the Quickstart to launch your diffusion journey today!
How to navigate the documentation
| Documentation | What can I learn? | |---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Tutorial | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. | | Loading | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. | | Pipelines for inference | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. | | Optimization | Guides for how to optimize your diffusion model to run faster and consume less memory. | | Training | Guides for how to train a diffusion model for different tasks with different training techniques. |
Contribution
We ❤️ contributions from the open-source community! If you want to contribute to this library, please check out our Contribution guide. You can look out for issues you'd like to tackle to contribute to the library. - See Good first issues for general opportunities to contribute - See New model/pipeline to contribute exciting new diffusion models / diffusion pipelines - See New scheduler
Also, say 👋 in our public Discord channel . We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or just hang out ☕.
Popular Tasks & Pipelines
| Task | Pipeline | 🤗 Hub |
|---|---|---|
| Unconditional Image Generation | DDPM | google/ddpm-ema-church-256 |
| Text-to-Image | Stable Diffusion Text-to-Image | stable-diffusion-v1-5/stable-diffusion-v1-5 |
| Text-to-Image | unCLIP | kakaobrain/karlo-v1-alpha |
| Text-to-Image | DeepFloyd IF | DeepFloyd/IF-I-XL-v1.0 |
| Text-to-Image | Kandinsky | kandinsky-community/kandinsky-2-2-decoder |
| Text-guided Image-to-Image | ControlNet | lllyasviel/sd-controlnet-canny |
| Text-guided Image-to-Image | InstructPix2Pix | timbrooks/instruct-pix2pix |
| Text-guided Image-to-Image | Stable Diffusion Image-to-Image | stable-diffusion-v1-5/stable-diffusion-v1-5 |
| Text-guided Image Inpainting | Stable Diffusion Inpainting | runwayml/stable-diffusion-inpainting |
| Image Variation | Stable Diffusion Image Variation | lambdalabs/sd-image-variations-diffusers |
| Super Resolution | Stable Diffusion Upscale | stabilityai/stable-diffusion-x4-upscaler |
| Super Resolution | Stable Diffusion Latent Upscale | stabilityai/sd-x2-latent-upscaler |
Popular libraries using 🧨 Diffusers
- https://github.com/microsoft/TaskMatrix
- https://github.com/invoke-ai/InvokeAI
- https://github.com/InstantID/InstantID
- https://github.com/apple/ml-stable-diffusion
- https://github.com/Sanster/lama-cleaner
- https://github.com/IDEA-Research/Grounded-Segment-Anything
- https://github.com/ashawkey/stable-dreamfusion
- https://github.com/deep-floyd/IF
- https://github.com/bentoml/BentoML
- https://github.com/bmaltais/kohya_ss
- +14,000 other amazing GitHub repositories 💪
Thank you for using us ❤️.
Credits
This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today:
- @CompVis' latent diffusion models library, available here
- @hojonathanho original DDPM implementation, available here as well as the extremely useful translation into PyTorch by @pesser, available here
- @ermongroup's DDIM implementation, available here
- @yang-song's Score-VE and Score-VP implementations, available here
We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available here as well as @crowsonkb and @rromb for useful discussions and insights.
Citation
bibtex
@misc{von-platen-etal-2022-diffusers,
author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Dhruv Nair and Sayak Paul and William Berman and Yiyi Xu and Steven Liu and Thomas Wolf},
title = {Diffusers: State-of-the-art diffusion models},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/huggingface/diffusers}}
}
Owner
- Name: crapthings
- Login: crapthings
- Kind: user
- Location: Harbin, China
- Website: https://soundcloud.com/drujk
- Twitter: crapthings
- Repositories: 43
- Profile: https://github.com/crapthings
javascript, coffeescript, typescript, solidity, ableton live, edm music
Citation (CITATION.cff)
cff-version: 1.2.0
title: 'Diffusers: State-of-the-art diffusion models'
message: >-
If you use this software, please cite it using the
metadata from this file.
type: software
authors:
- given-names: Patrick
family-names: von Platen
- given-names: Suraj
family-names: Patil
- given-names: Anton
family-names: Lozhkov
- given-names: Pedro
family-names: Cuenca
- given-names: Nathan
family-names: Lambert
- given-names: Kashif
family-names: Rasul
- given-names: Mishig
family-names: Davaadorj
- given-names: Dhruv
family-names: Nair
- given-names: Sayak
family-names: Paul
- given-names: Steven
family-names: Liu
- given-names: William
family-names: Berman
- given-names: Yiyi
family-names: Xu
- given-names: Thomas
family-names: Wolf
repository-code: 'https://github.com/huggingface/diffusers'
abstract: >-
Diffusers provides pretrained diffusion models across
multiple modalities, such as vision and audio, and serves
as a modular toolbox for inference and training of
diffusion models.
keywords:
- deep-learning
- pytorch
- image-generation
- hacktoberfest
- diffusion
- text2image
- image2image
- score-based-generative-modeling
- stable-diffusion
- stable-diffusion-diffusers
license: Apache-2.0
version: 0.12.1
GitHub Events
Total
- Push event: 5
- Create event: 2
Last Year
- Push event: 5
- Create event: 2
Issues and Pull Requests
Last synced: 8 months ago
All Time
- Total issues: 0
- Total pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Total issue authors: 0
- Total pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- actions/cache v2 composite
- actions/checkout v3 composite
- actions/upload-artifact v4 composite
- actions/checkout v3 composite
- docker/build-push-action v3 composite
- docker/login-action v2 composite
- docker/setup-buildx-action v1 composite
- huggingface/hf-workflows/.github/actions/post-slack main composite
- jitterbit/get-changed-files v1 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/checkout v3 composite
- actions/upload-artifact v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/checkout v3 composite
- actions/upload-artifact v3 composite
- actions/upload-artifact v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/upload-artifact v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/checkout v3 composite
- actions/upload-artifact v4 composite
- actions/checkout v3 composite
- actions/upload-artifact v4 composite
- ./.github/actions/setup-miniconda * composite
- actions/checkout v3 composite
- actions/upload-artifact v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/checkout v3 composite
- actions/upload-artifact v4 composite
- actions/checkout v4 composite
- actions/checkout v3 composite
- huggingface/tailscale-action main composite
- actions/checkout v3 composite
- huggingface/tailscale-action main composite
- actions/checkout v2 composite
- actions/setup-python v1 composite
- actions/checkout v4 composite
- trufflesecurity/trufflehog main composite
- actions/checkout v3 composite
- crate-ci/typos v1.12.4 composite
- actions/checkout v3 composite
- ubuntu 20.04 build
- ubuntu 20.04 build
- ubuntu 20.04 build
- ubuntu 20.04 build
- nvidia/cuda 12.1.0-runtime-ubuntu20.04 build
- nvidia/cuda 12.1.0-runtime-ubuntu20.04 build
- ubuntu 20.04 build
- nvidia/cuda 12.1.0-runtime-ubuntu20.04 build
- nvidia/cuda 12.1.0-runtime-ubuntu20.04 build
- nvidia/cuda 12.1.0-runtime-ubuntu20.04 build
- Jinja2 *
- accelerate >=0.16.0
- ftfy *
- peft ==0.7.0
- tensorboard *
- torchvision *
- transformers >=4.25.1
- Jinja2 *
- accelerate >=0.31.0
- ftfy *
- peft >=0.11.1
- sentencepiece *
- tensorboard *
- torchvision *
- transformers >=4.41.2
- Jinja2 *
- accelerate >=0.31.0
- decord >=0.6.0
- ftfy *
- imageio-ffmpeg *
- peft >=0.11.1
- sentencepiece *
- tensorboard *
- torchvision *
- transformers >=4.41.2
- Jinja2 *
- accelerate >=0.16.0
- ftfy *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- webdataset *
- accelerate >=0.16.0
- datasets *
- ftfy *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- Jinja2 *
- datasets *
- flax *
- ftfy *
- optax *
- tensorboard *
- torch *
- torchvision *
- transformers >=4.25.1
- Jinja2 *
- SentencePiece *
- accelerate >=0.16.0
- datasets *
- ftfy *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- wandb *
- Jinja2 *
- accelerate >=0.16.0
- datasets *
- ftfy *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- wandb *
- Jinja2 *
- accelerate >=0.16.0
- datasets *
- ftfy *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- wandb *
- Jinja2 *
- accelerate *
- ftfy *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- Jinja2 *
- accelerate >=0.16.0
- ftfy *
- peft ==0.7.0
- tensorboard *
- torchvision *
- transformers >=4.25.1
- Jinja2 *
- flax *
- ftfy *
- optax *
- tensorboard *
- torch *
- torchvision *
- transformers >=4.25.1
- Jinja2 *
- accelerate >=0.31.0
- ftfy *
- peft >=0.11.1
- sentencepiece *
- tensorboard *
- torchvision *
- transformers >=4.41.2
- Jinja2 *
- accelerate >=1.0.0
- ftfy *
- peft >=0.14.0
- sentencepiece *
- tensorboard *
- torchvision *
- transformers >=4.47.0
- Jinja2 *
- accelerate >=0.31.0
- ftfy *
- peft ==0.11.1
- sentencepiece *
- tensorboard *
- torchvision *
- transformers >=4.41.2
- Jinja2 *
- accelerate >=0.16.0
- ftfy *
- peft ==0.7.0
- tensorboard *
- torchvision *
- transformers >=4.25.1
- accelerate ==1.2.0
- peft >=0.14.0
- torch *
- torchvision *
- transformers ==4.47.0
- wandb *
- accelerate >=0.16.0
- datasets *
- ftfy *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- Jinja2 *
- accelerate >=0.16.0
- datasets *
- ftfy *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- huggingface-hub >=0.26.2
- Jinja2 *
- diffusers *
- ftfy *
- tensorboard *
- torch *
- torchvision *
- transformers *
- Jinja2 *
- accelerate >=0.16.0
- ftfy *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- Jinja2 *
- accelerate >=0.16.0
- ftfy *
- peft *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- wandb *
- accelerate *
- datasets *
- peft *
- torchvision *
- transformers *
- wandb *
- webdataset *
- Jinja2 *
- accelerate >=0.16.0
- diffusers ==0.9.0
- ftfy *
- tensorboard *
- torchvision *
- transformers >=4.21.0
- Jinja2 *
- accelerate >=0.16.0
- diffusers *
- fairscale *
- ftfy *
- scipy *
- tensorboard *
- timm *
- torchvision *
- transformers >=4.25.1
- wandb *
- Jinja2 *
- accelerate >=0.16.0
- ftfy *
- intel_extension_for_pytorch >=1.13
- tensorboard *
- torchvision *
- transformers >=4.21.0
- accelerate *
- ftfy *
- modelcards *
- neural-compressor *
- tensorboard *
- torchvision *
- transformers >=4.25.0
- accelerate *
- ip_adapter *
- torchvision *
- transformers >=4.25.1
- Jinja2 *
- accelerate >=0.16.0
- datasets *
- ftfy *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- Jinja2 *
- accelerate >=0.16.0
- ftfy *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- Jinja2 *
- accelerate >=0.16.0
- datasets >=2.16.0
- ftfy *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- wandb >=0.16.1
- Jinja2 *
- accelerate >=0.16.0
- ftfy *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- Jinja2 *
- flax *
- ftfy *
- optax *
- tensorboard *
- torch *
- torchvision *
- transformers >=4.25.1
- accelerate >=0.16.0
- datasets *
- ftfy *
- modelcards *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- accelerate >=0.16.0
- ftfy *
- modelcards *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- accelerate >=0.16.0
- datasets *
- tensorboard *
- torchvision *
- SentencePiece *
- controlnet-aux *
- datasets *
- torchvision *
- transformers *
- Jinja2 *
- accelerate >=0.16.0
- datasets >=2.19.1
- ftfy *
- peft ==0.7.0
- tensorboard *
- torchvision *
- transformers >=4.25.1
- Jinja2 ==3.1.5
- accelerate ==0.23.0
- diffusers ==0.20.1
- ftfy ==6.1.1
- peft ==0.5.0
- tensorboard ==2.14.0
- torch ==2.2.0
- torchvision >=0.16
- transformers ==4.38.0
- accelerate >=0.16.0
- bitsandbytes *
- deepspeed *
- peft >=0.6.0
- torchvision *
- transformers >=4.25.1
- wandb *
- aiohttp *
- fastapi *
- prometheus-fastapi-instrumentator >=7.0.0
- prometheus_client >=0.18.0
- py-consul *
- sentencepiece *
- torch *
- transformers ==4.46.1
- uvicorn *
- aiohappyeyeballs ==2.4.3
- aiohttp ==3.10.10
- aiosignal ==1.3.1
- annotated-types ==0.7.0
- anyio ==4.6.2.post1
- attrs ==24.2.0
- certifi ==2024.8.30
- charset-normalizer ==3.4.0
- click ==8.1.7
- fastapi ==0.115.3
- filelock ==3.16.1
- frozenlist ==1.5.0
- fsspec ==2024.10.0
- h11 ==0.14.0
- huggingface-hub ==0.26.1
- idna ==3.10
- jinja2 ==3.1.4
- markupsafe ==3.0.2
- mpmath ==1.3.0
- multidict ==6.1.0
- networkx ==3.4.2
- numpy ==2.1.2
- packaging ==24.1
- prometheus-client ==0.21.0
- prometheus-fastapi-instrumentator ==7.0.0
- propcache ==0.2.0
- py-consul ==1.5.3
- pydantic ==2.9.2
- pydantic-core ==2.23.4
- pyyaml ==6.0.2
- regex ==2024.9.11
- requests ==2.32.3
- safetensors ==0.4.5
- sentencepiece ==0.2.0
- sniffio ==1.3.1
- starlette ==0.41.0
- sympy ==1.13.3
- tokenizers ==0.20.1
- torch ==2.4.1
- tqdm ==4.66.5
- transformers ==4.46.1
- typing-extensions ==4.12.2
- urllib3 ==2.2.3
- uvicorn ==0.32.0
- yarl ==1.16.0
- accelerate >=0.16.0
- datasets *
- ftfy *
- safetensors *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- wandb *
- Jinja2 *
- accelerate >=0.16.0
- datasets >=2.19.1
- ftfy *
- peft ==0.7.0
- tensorboard *
- torchvision *
- transformers >=4.25.1
- Jinja2 *
- datasets *
- flax *
- ftfy *
- optax *
- tensorboard *
- torch *
- torchvision *
- transformers >=4.25.1
- Jinja2 *
- accelerate >=0.22.0
- datasets *
- ftfy *
- peft ==0.7.0
- tensorboard *
- torchvision *
- transformers >=4.25.1
- Jinja2 *
- accelerate >=0.16.0
- ftfy *
- tensorboard *
- torchvision *
- transformers >=4.25.1
- Jinja2 *
- flax *
- ftfy *
- optax *
- tensorboard *
- torch *
- torchvision *
- transformers >=4.25.1
- accelerate >=0.16.0
- datasets *
- torchvision *
- accelerate >=0.16.0
- datasets *
- numpy *
- tensorboard *
- timm *
- torchvision *
- tqdm *
- transformers >=4.25.1
- deps *