blas-base-wasm-ccopy

Copy values from one complex single-precision floating-point vector to another complex single-precision floating-point vector.

https://github.com/stdlib-js/blas-base-wasm-ccopy

Science Score: 44.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (15.5%) to scientific vocabulary

Keywords

algebra array blas ccopy complex complex64 copy javascript level-1 linear math mathematics ndarray node node-js nodejs stdlib subroutines typed vector
Last synced: 6 months ago · JSON representation ·

Repository

Copy values from one complex single-precision floating-point vector to another complex single-precision floating-point vector.

Basic Info
Statistics
  • Stars: 1
  • Watchers: 2
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Topics
algebra array blas ccopy complex complex64 copy javascript level-1 linear math mathematics ndarray node node-js nodejs stdlib subroutines typed vector
Created about 1 year ago · Last pushed 7 months ago
Metadata Files
Readme Changelog Contributing License Code of conduct Citation Security

README.md

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

ccopy

NPM version Build Status Coverage Status <!-- dependencies -->

Copy values from one complex single-precision floating-point vector to another complex single-precision floating-point vector.

## Installation ```bash npm install @stdlib/blas-base-wasm-ccopy ``` Alternatively, - To load the package in a website via a `script` tag without installation and bundlers, use the [ES Module][es-module] available on the [`esm`][esm-url] branch (see [README][esm-readme]). - If you are using Deno, visit the [`deno`][deno-url] branch (see [README][deno-readme] for usage intructions). - For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [`umd`][umd-url] branch (see [README][umd-readme]). The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships. To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
## Usage ```javascript var ccopy = require( '@stdlib/blas-base-wasm-ccopy' ); ``` #### ccopy.main( N, x, strideX, y, strideY ) Copies values from `x` into `y`. ```javascript var Complex64Array = require( '@stdlib/array-complex64' ); // Define strided arrays... var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); var y = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ); // Perform operation: ccopy.main( x.length, x, 1, y, 1 ); // y => [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ``` The function has the following parameters: - **N**: number of indexed elements. - **x**: input [`Complex64Array`][@stdlib/array/complex64]. - **strideX**: index increment for `x`. - **y**: output [`Complex64Array`][@stdlib/array/complex64]. - **strideY**: index increment for `y`. The `N` and stride parameters determine how values from `x` are copied into `y`. For example, to copy every other value in `x` into the first `N` elements of `y` in reverse order, ```javascript var Complex64Array = require( '@stdlib/array-complex64' ); var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); var y = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ); ccopy.main( 2, x, -2, y, 1 ); // y => [ 5.0, 6.0, 1.0, 2.0, 0.0, 0.0, 0.0, 0.0 ] ``` Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. ```javascript var Complex64Array = require( '@stdlib/array-complex64' ); // Initial arrays... var x0 = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); var y0 = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ); // Create offset views... var x1 = new Complex64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var y1 = new Complex64Array( y0.buffer, y0.BYTES_PER_ELEMENT*2 ); // start at 3rd element // Copy every other value from `x1` into `y1` in reverse order... ccopy.main( 2, x1, -2, y1, 1 ); // y0 => [ 0.0, 0.0, 0.0, 0.0, 7.0, 8.0, 3.0, 4.0 ] ``` #### ccopy.ndarray( N, x, strideX, offsetX, y, strideY, offsetY ) Copies values from `x` into `y` using alternative indexing semantics. ```javascript var Complex64Array = require( '@stdlib/array-complex64' ); var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); var y = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ); ccopy.ndarray( x.length, x, 1, 0, y, 1, 0 ); // y => [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ``` The function has the following additional parameters: - **offsetX**: starting index for `x`. - **offsetY**: starting index for `y`. While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to copy every other value in `x` starting from the second value into the last `N` elements in `y` where `x[i] = y[n]`, `x[i+2] = y[n-1]`,..., ```javascript var Complex64Array = require( '@stdlib/array-complex64' ); var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); var y = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ); ccopy.ndarray( 2, x, 2, 1, y, -1, y.length-1 ); // y => [ 0.0, 0.0, 0.0, 0.0, 7.0, 8.0, 3.0, 4.0 ] ``` * * * ### Module #### ccopy.Module( memory ) Returns a new WebAssembly [module wrapper][@stdlib/wasm/module-wrapper] instance which uses the provided WebAssembly [memory][@stdlib/wasm/memory] instance as its underlying memory. ```javascript var Memory = require( '@stdlib/wasm-memory' ); // Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB): var mem = new Memory({ 'initial': 10, 'maximum': 100 }); // Create a BLAS routine: var mod = new ccopy.Module( mem ); // returns // Initialize the routine: mod.initializeSync(); ``` #### ccopy.Module.prototype.main( N, xp, sx, yp, sy ) Copies values from `x` into `y`. ```javascript var Memory = require( '@stdlib/wasm-memory' ); var oneTo = require( '@stdlib/array-one-to' ); var zeros = require( '@stdlib/array-zeros' ); var bytesPerElement = require( '@stdlib/ndarray-base-bytes-per-element' ); var Complex64Array = require( '@stdlib/array-complex64' ); var reinterpretComplex64 = require( '@stdlib/strided-base-reinterpret-complex64' ); var ccopy = require( '@stdlib/blas-base-wasm-ccopy' ); // Create a new memory instance with an initial size of 10 pages (320KiB) and a maximum size of 100 pages (6.4MiB): var mem = new Memory({ 'initial': 10, 'maximum': 100 }); // Create a BLAS routine: var mod = new ccopy.Module( mem ); // returns // Initialize the routine: mod.initializeSync(); // Define a vector data type: var dtype = 'complex64'; // Specify a vector length: var N = 5; // Define a pointer (i.e., byte offset) for storing the input vector: var xptr = 0; // Define a pointer (i.e., byte offset) for storing the output vector: var yptr = N * bytesPerElement( dtype ); // Write vector values to module memory: var xbuf = oneTo( N*2, 'float32' ); var x = new Complex64Array( xbuf.buffer ); mod.write( xptr, x ); var ybuf = zeros( N*2, 'float32' ); var y = new Complex64Array( ybuf.buffer ); mod.write( yptr, y ); // Perform computation: mod.main( N, xptr, 1, yptr, 1 ); // Read out the results: var view = zeros( N, dtype ); mod.read( yptr, view ); console.log( reinterpretComplex64( view, 0 ) ); // => [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 ] ``` The function has the following parameters: - **N**: number of indexed elements. - **xp**: input [`Complex64Array`][@stdlib/array/complex64] pointer (i.e., byte offset). - **sx**: index increment for `x`. - **yp**: output [`Complex64Array`][@stdlib/array/complex64] pointer (i.e., byte offset). - **sy**: index increment for `y`. #### ccopy.Module.prototype.ndarray( N, xp, sx, ox, yp, sy, oy ) Copies values from `x` into `y` using alternative indexing semantics. ```javascript var Memory = require( '@stdlib/wasm-memory' ); var oneTo = require( '@stdlib/array-one-to' ); var zeros = require( '@stdlib/array-zeros' ); var bytesPerElement = require( '@stdlib/ndarray-base-bytes-per-element' ); var Complex64Array = require( '@stdlib/array-complex64' ); var reinterpretComplex64 = require( '@stdlib/strided-base-reinterpret-complex64' ); var ccopy = require( '@stdlib/blas-base-wasm-ccopy' ); // Create a new memory instance with an initial size of 10 pages (320KiB) and a maximum size of 100 pages (6.4MiB): var mem = new Memory({ 'initial': 10, 'maximum': 100 }); // Create a BLAS routine: var mod = new ccopy.Module( mem ); // returns // Initialize the routine: mod.initializeSync(); // Define a vector data type: var dtype = 'complex64'; // Specify a vector length: var N = 5; // Define a pointer (i.e., byte offset) for storing the input vector: var xptr = 0; // Define a pointer (i.e., byte offset) for storing the output vector: var yptr = N * bytesPerElement( dtype ); // Write vector values to module memory: var xbuf = oneTo( N*2, 'float32' ); var x = new Complex64Array( xbuf.buffer ); mod.write( xptr, x ); var ybuf = zeros( N*2, 'float32' ); var y = new Complex64Array( ybuf.buffer ); mod.write( yptr, y ); // Perform computation: mod.ndarray( N, xptr, 1, 0, yptr, 1, 0 ); // Read out the results: var view = zeros( N, dtype ); mod.read( yptr, view ); console.log( reinterpretComplex64( view, 0 ) ); // => [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 ] ``` The function has the following additional parameters: - **ox**: starting index for `x`. - **oy**: starting index for `y`.
* * * ## Notes - If `N <= 0`, both functions return `y` unchanged. - This package implements routines using WebAssembly. When provided arrays which are not allocated on a `ccopy` module memory instance, data must be explicitly copied to module memory prior to computation. Data movement may entail a performance cost, and, thus, if you are using arrays external to module memory, you should prefer using [`@stdlib/blas-base/ccopy`][@stdlib/blas/base/ccopy]. However, if working with arrays which are allocated and explicitly managed on module memory, you can achieve better performance when compared to the pure JavaScript implementations found in [`@stdlib/blas/base/ccopy`][@stdlib/blas/base/ccopy]. Beware that such performance gains may come at the cost of additional complexity when having to perform manual memory management. Choosing between implementations depends heavily on the particular needs and constraints of your application, with no one choice universally better than the other. - `ccopy()` corresponds to the [BLAS][blas] level 1 function [`ccopy`][ccopy].
* * * ## Examples ```javascript var oneTo = require( '@stdlib/array-one-to' ); var zeros = require( '@stdlib/array-zeros' ); var Complex64Array = require( '@stdlib/array-complex64' ); var reinterpretComplex64 = require( '@stdlib/strided-base-reinterpret-complex64' ); var ccopy = require( '@stdlib/blas-base-wasm-ccopy' ); // Specify a vector length: var N = 5; var xbuf = oneTo( N*2, 'float32' ); var x = new Complex64Array( xbuf.buffer ); var ybuf = zeros( N*2, 'float32' ); var y = new Complex64Array( ybuf.buffer ); // Perform computation: ccopy.ndarray( N, x, 1, 0, y, -1, N-1 ); // Print the results: console.log( reinterpretComplex64( y, 0 ) ); // => [ 9.0, 10.0, 7.0, 8.0, 5.0, 6.0, 3.0, 4.0, 1.0, 2.0 ] ```
* * * ## Notice This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more. For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib]. #### Community [![Chat][chat-image]][chat-url] --- ## License See [LICENSE][stdlib-license]. ## Copyright Copyright © 2016-2025. The Stdlib [Authors][stdlib-authors].

Owner

  • Name: stdlib
  • Login: stdlib-js
  • Kind: organization

Standard library for JavaScript.

Citation (CITATION.cff)

cff-version: 1.2.0
title: stdlib
message: >-
  If you use this software, please cite it using the
  metadata from this file.

type: software

authors:
  - name: The Stdlib Authors
    url: https://github.com/stdlib-js/stdlib/graphs/contributors

repository-code: https://github.com/stdlib-js/stdlib
url: https://stdlib.io

abstract: |
  Standard library for JavaScript and Node.js.

keywords:
  - JavaScript
  - Node.js
  - TypeScript
  - standard library
  - scientific computing
  - numerical computing
  - statistical computing

license: Apache-2.0 AND BSL-1.0

date-released: 2016

GitHub Events

Total
  • Push event: 42
  • Create event: 3
Last Year
  • Push event: 42
  • Create event: 3