sammyseq
Pipeline for Sequential Analysis of MacroMolecules accessibilitY sequencing (SAMMY-seq) data, to analyze chromatin state.
Science Score: 67.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 14 DOI reference(s) in README -
✓Academic publication links
Links to: pubmed.ncbi, ncbi.nlm.nih.gov -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (8.8%) to scientific vocabulary
Keywords
Repository
Pipeline for Sequential Analysis of MacroMolecules accessibilitY sequencing (SAMMY-seq) data, to analyze chromatin state.
Basic Info
- Host: GitHub
- Owner: nf-core
- License: mit
- Language: Nextflow
- Default Branch: dev
- Homepage: https://nf-co.re/sammyseq
- Size: 5.25 MB
Statistics
- Stars: 5
- Watchers: 171
- Forks: 15
- Open Issues: 7
- Releases: 0
Topics
Metadata Files
README.md
Introduction
nf-core/sammyseq is a bioinformatics pipeline for the analysis of Sequential Analysis of MacroMolecules accessibilitY sequencing (SAMMY-seq) data, a cheap and effective methodology to analyze chromatin state as described in:
Lucini F, Petrini C, Salviato E, Pal K, Rosti V, Gorini F, Santarelli P, Quadri R, Lembo G, Graziano G, Di Patrizio Soldateschi E, Tagliaferri I, Pinatel E, Sebestyén E, Rotta L, Gentile F, Vaira V, Lanzuolo C, Ferrari F. Biochemical properties of chromatin domains define genome compartmentalization. Nucleic Acids Research, Volume 52, Issue 12, 8 July 2024, Page e54 doi pubmed
Sebestyén, E., Marullo, F., Lucini, F. et al. SAMMY-seq reveals early alteration of heterochromatin and deregulation of bivalent genes in Hutchinson-Gilford Progeria Syndrome. Nat Commun 11, 6274 (2020) doi pubmed
[!WARNING] Please note that this pipeline is under active development and has not been released yet.
Here is an outline of the analysis steps:
- Read QC (
FastQC) - Trim reads to remove adapter sequences and low quality ends (
Trim Galore!orTrimmomatic) - Align on a reference genome (
BWAorBowtie 2) - Mark duplicate reads (
picard Markduplicates) - Filter reads and generate alignment statistics (
samtools) - Create single track profiles in bigwig format (
deeptools) - (Optionally) Generate pairwise comparison tracks in bigwig format if provided a list of the desired sample pairs ([
spp]) - Generate an analysis report by collecting all generated QC and statistics (
MultiQC)
Usage
[!NOTE] If you are new to Nextflow and nf-core, please refer to this page on how to set-up Nextflow. Make sure to test your setup with
-profile testbefore running the workflow on actual data.
First, prepare a samplesheet with your input data that looks as follows:
samplesheet.csv:
csv
sample,fastq_1,fastq_2,experimentalID,fraction,sample_group
CTRL004_S2,/home/sammy/test_data/CTRL004_S2_chr22only.fq.gz,,CTRL004,S2,CTRL
CTRL004_S3,/home/sammy/test_data/CTRL004_S3_chr22only.fq.gz,,CTRL004,S3,CTRL
CTRL004_S4,/home/sammy/test_data/CTRL004_S4_chr22only.fq.gz,,CTRL004,S4,CTRL
Each row represents a fastq file (single-end) or a pair of fastq files (paired end), experimentalID represents the biological specimen of interest and sample the library produced for each fraction, it usually is a unique combination of experimentalID and fraction. The sample_group field is used to group samples that belong to the same biological condition.
Now, you can run the pipeline using:
bash
nextflow run nf-core/sammyseq \
-profile <docker/singularity/.../institute> \
--fasta reference_genome.fa \
--input samplesheet.csv \
--outdir <OUTDIR>
or
bash
nextflow run nf-core/sammyseq \
-profile <docker/singularity/.../institute> \
--fasta reference_genome.fa \
--input samplesheet.csv \
--outdir <OUTDIR> \
--comparison S2SvsS3
[!WARNING] Please provide pipeline parameters via the CLI or Nextflow
-params-fileoption. Custom config files including those provided by the-cNextflow option can be used to provide any configuration except for parameters; see docs.
For more details and further functionality, please refer to the usage documentation and the parameter documentation.
Pipeline output
For more details about the output files and reports, please refer to the output documentation.
Credits
The SAMMY-seq data analysis procedure was originally developed by the laboratory of Francesco Ferrari (IFOM-ETS, Milan; IGM-CNR, Pavia) in collaboration with the laboratory of Chiara Lanzuolo (INGM, Milan; ITB-CNR, Segrate). The orginal pipeline backbone was mainly the result of work by Cristiano Petrini (IFOM) and Endre Sebestyén (IFOM), with significant contributions by Ilario Tagliaferri (IFOM), Giovanni Lembo (IFOM) and Emanuele Di Patrizio Soldateschi (INGM). The project also benefited from the collaboration and input by Eva Maria Pinatel (ITB-CNR). The product of this effort resulted in a first pipeline implemented in bash and adapted to work on Sun Grid Engine (SGE) scheduler.
The nf-core pipeline (nf-core/sammyseq) is being implemented by Lucio Di Filippo (ISASI-CNR, Pozzuoli; IBBTEC, Santander), Ugo Maria Iannacchero (ITB-CNR) and Margherita Mutarelli (ISASI-CNR).
Many thanks to others who have helped out and contributed along the way too, including (but not limited to): Phil Ewels, Maxime Ulysse Garcia, Friederike Hanssen, Matthias Hörtenhuber, Marinicla Pascale, Júlia Mir-Pedrol and Marcel Ribeiro-Dantas.
Acknowledgements
The development of this pipeline was made possible thanks to the projects Progetti@CNR Myo-CoV-2 B93C20046330005, AFM Téléthon EDMD-GenomeSCAN B53C22009260007 and PIR01_00011 I.Bi.S.Co. Infrastruttura per Big data e Scientific COmputing (PON 2014-2020).
Contributions and Support
If you would like to contribute to this pipeline, please see the contributing guidelines.
For further information or help, don't hesitate to get in touch on the Slack #sammyseq channel (you can join with this invite).
Citations
An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md file.
You can cite the nf-core publication as follows:
The nf-core framework for community-curated bioinformatics pipelines.
Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.
Nat Biotechnol. 2020 Feb 13. doi: 10.1038/s41587-020-0439-x.
Owner
- Name: nf-core
- Login: nf-core
- Kind: organization
- Email: core@nf-co.re
- Website: http://nf-co.re
- Twitter: nf_core
- Repositories: 84
- Profile: https://github.com/nf-core
A community effort to collect a curated set of analysis pipelines built using Nextflow.
Citation (CITATIONS.md)
# nf-core/sammyseq: Citations ## [nf-core](https://pubmed.ncbi.nlm.nih.gov/32055031/) > Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020 Mar;38(3):276-278. doi: 10.1038/s41587-020-0439-x. PubMed PMID: 32055031. ## [Nextflow](https://pubmed.ncbi.nlm.nih.gov/28398311/) > Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017 Apr 11;35(4):316-319. doi: 10.1038/nbt.3820. PubMed PMID: 28398311. ## Pipeline tools - [BWA](https://www.ncbi.nlm.nih.gov/pubmed/19451168/) > Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009 Jul 15;25(14):1754-60. doi: 10.1093/bioinformatics/btp324. Epub 2009 May 18. PubMed PMID: 19451168; PubMed Central PMCID: PMC2705234. - [Bowtie 2](https://bowtie-bio.sourceforge.net/bowtie2) > Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012 Mar 4;9(4):357-9. doi: 10.1038/nmeth.1923. PMID: 22388286; PMCID: PMC3322381. - [deepTools](https://www.ncbi.nlm.nih.gov/pubmed/27079975/) > Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dündar F, Manke T. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5. doi: 10.1093/nar/gkw257. Epub 2016 Apr 13. PubMed PMID: 27079975; PubMed Central PMCID: PMC4987876. - [FastQC](https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) > Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. - [MultiQC](https://pubmed.ncbi.nlm.nih.gov/27312411/) > Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016 Oct 1;32(19):3047-8. doi: 10.1093/bioinformatics/btw354. Epub 2016 Jun 16. PubMed PMID: 27312411; PubMed Central PMCID: PMC5039924. - [picard-tools](http://broadinstitute.github.io/picard) - [SAMtools](https://www.ncbi.nlm.nih.gov/pubmed/19505943/) > Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009 Aug 15;25(16):2078-9. doi: 10.1093/bioinformatics/btp352. Epub 2009 Jun 8. PubMed PMID: 19505943; PubMed Central PMCID: PMC2723002. - [Trim Galore!](https://github.com/FelixKrueger/TrimGalore) - [Trimmomatic](https://pubmed.ncbi.nlm.nih.gov/24695404/) > Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014 Aug 1;30(15):2114-20. doi: 10.1093/bioinformatics/btu170. Epub 2014 Apr 1. PMID: 24695404; PMCID: PMC4103590. ## R packages - [R](https://www.R-project.org/) > R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. - [data.table](https://CRAN.R-project.org/package=data.table) > Dowle M, Srinivasan A (2023). data.table: Extension of 'data.frame'. https://r-datatable.com, https://Rdatatable.gitlab.io/data.table, https://github.com/Rdatatable/data.table. - [Rcpp](https://CRAN.R-project.org/package=Rcpp) > Eddelbuettel, D., & Francois, R. (2011). Rcpp: Seamless R and C++ Integration. Journal of Statistical Software, 40(8), 1–18. https://doi.org/10.18637/jss.v040.i08 - [rtracklayer](https://bioconductor.org/packages/rtracklayer) > Lawrence M, Gentleman R, Carey V (2009). “rtracklayer: an R package for interfacing with genome browsers.” Bioinformatics, 25, 1841-1842. doi:10.1093/bioinformatics/btp328, http://bioinformatics.oxfordjournals.org/content/25/14/1841.abstract. - [spp](https://CRAN.R-project.org/package=spp) > Kharchenko PK, Tolstorukov MY, Park PJ "Design and analysis of ChIP-seq experiments for DNA-binding proteins" Nat. Biotech. doi:10.1038/nbt.1508 ## Software packaging/containerisation tools - [Anaconda](https://anaconda.com) > Anaconda Software Distribution. Computer software. Vers. 2-2.4.0. Anaconda, Nov. 2016. Web. - [Bioconda](https://pubmed.ncbi.nlm.nih.gov/29967506/) > Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J; Bioconda Team. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018 Jul;15(7):475-476. doi: 10.1038/s41592-018-0046-7. PubMed PMID: 29967506. - [BioContainers](https://pubmed.ncbi.nlm.nih.gov/28379341/) > da Veiga Leprevost F, Grüning B, Aflitos SA, Röst HL, Uszkoreit J, Barsnes H, Vaudel M, Moreno P, Gatto L, Weber J, Bai M, Jimenez RC, Sachsenberg T, Pfeuffer J, Alvarez RV, Griss J, Nesvizhskii AI, Perez-Riverol Y. BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics. 2017 Aug 15;33(16):2580-2582. doi: 10.1093/bioinformatics/btx192. PubMed PMID: 28379341; PubMed Central PMCID: PMC5870671. - [Docker](https://dl.acm.org/doi/10.5555/2600239.2600241) > Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux Journal, 2014(239), 2. doi: 10.5555/2600239.2600241. - [Singularity](https://pubmed.ncbi.nlm.nih.gov/28494014/) > Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLoS One. 2017 May 11;12(5):e0177459. doi: 10.1371/journal.pone.0177459. eCollection 2017. PubMed PMID: 28494014; PubMed Central PMCID: PMC5426675.
GitHub Events
Total
- Issues event: 34
- Watch event: 3
- Delete event: 36
- Issue comment event: 38
- Push event: 84
- Pull request event: 50
- Pull request review event: 35
- Pull request review comment event: 11
- Fork event: 11
- Create event: 22
Last Year
- Issues event: 34
- Watch event: 3
- Delete event: 36
- Issue comment event: 38
- Push event: 84
- Pull request event: 50
- Pull request review event: 35
- Pull request review comment event: 11
- Fork event: 11
- Create event: 22
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 18
- Total pull requests: 23
- Average time to close issues: about 2 months
- Average time to close pull requests: about 22 hours
- Total issue authors: 3
- Total pull request authors: 6
- Average comments per issue: 0.11
- Average comments per pull request: 0.83
- Merged pull requests: 14
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 17
- Pull requests: 23
- Average time to close issues: 6 days
- Average time to close pull requests: about 22 hours
- Issue authors: 3
- Pull request authors: 6
- Average comments per issue: 0.12
- Average comments per pull request: 0.83
- Merged pull requests: 14
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- daisymut (8)
- ugoiannacchero (7)
- Fra1197 (4)
- nvnieuwk (1)
Pull Request Authors
- nf-core-bot (13)
- ugoiannacchero (10)
- daisymut (8)
- Marinicla (2)
- fferrari (1)
- MarcoRice (1)