pangenome
Renders a collection of sequences into a pangenome graph. https://doi.org/10.1093/bioinformatics/btae609.
Science Score: 67.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 13 DOI reference(s) in README -
○Academic publication links
-
✓Committers with academic emails
1 of 8 committers (12.5%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (10.4%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
Renders a collection of sequences into a pangenome graph. https://doi.org/10.1093/bioinformatics/btae609.
Basic Info
- Host: GitHub
- Owner: nf-core
- License: mit
- Language: Nextflow
- Default Branch: master
- Homepage: https://nf-co.re/pangenome
- Size: 4.28 MB
Statistics
- Stars: 91
- Watchers: 80
- Forks: 20
- Open Issues: 15
- Releases: 5
Topics
Metadata Files
README.md
Introduction
nf-core/pangenome is a bioinformatics best-practice analysis pipeline for pangenome graph construction. The pipeline renders a collection of sequences into a pangenome graph. Its goal is to build a graph that is locally directed and acyclic while preserving large-scale variation. Maintaining local linearity is important for interpretation, visualization, mapping, comparative genomics, and reuse of pangenome graphs.
The pipeline is built using Nextflow, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It uses Docker/Singularity containers making installation trivial and results highly reproducible. The Nextflow DSL2 implementation of this pipeline uses one container per process which makes it much easier to maintain and update software dependencies. Where possible, these processes have been submitted to and installed from nf-core/modules in order to make them available to all nf-core pipelines, and to everyone within the Nextflow community!
On release, automated continuous integration tests run the pipeline on a full-sized dataset on the AWS cloud infrastructure. This ensures that the pipeline runs on AWS, has sensible resource allocation defaults set to run on real-world datasets, and permits the persistent storage of results to benchmark between pipeline releases and other analysis sources. The results obtained from the full-sized test can be viewed on the nf-core website.
Pipeline summary
- All versus all alignment (
WFMASH) - Graph induction (
SEQWISH) - Graph normalization (
SMOOTHXG) - Remove redundancy (
GFAFFIX) - Graph statistics and qualitative visualizations (
ODGI) - Combine diagnostic information into a report (
MULTIQC)
Usage
[!NOTE] If you are new to Nextflow and nf-core, please refer to this page on how to set-up Nextflow. Make sure to test your setup with
-profile testbefore running the workflow on actual data.
Now, you can run the pipeline using:
bash
nextflow run nf-core/pangenome -r dev --input <BGZIPPED_FASTA> --n_haplotypes <NUM_HAPS_IN_FASTA> --outdir <OUTDIR> -profile <docker/singularity/podman/shifter/charliecloud/conda/institute>
[!WARNING] Please provide pipeline parameters via the CLI or Nextflow
-params-fileoption. Custom config files including those provided by the-cNextflow option can be used to provide any configuration except for parameters; see docs.
For more details and further functionality, please refer to the usage documentation and the parameter documentation.
Advantages over PGGB
This Nextflow pipeline version's major advantage is that it can distribute the usually computationally heavy all versus all alignment step across a whole cluster. It is capable of splitting the initial approximate alignments into problems of equal size. The base-level alignments are then distributed across several processes. Assuming you have a cluster with 10 nodes and you are the only one using it, we would recommend to set --wfmash_chunks 10.
If you have a cluster with 20 nodes, but you have to share it with others, maybe setting it to --wfmash_chunks 10 could be a good fit, because then you don't have to wait too long for your jobs to finish.
Pipeline output
To see the results of an example test run with a full size dataset refer to the results tab on the nf-core website pipeline page. For more details about the output files and reports, please refer to the output documentation.
Credits
nf-core/pangenome was originally adapted from PGGB by Simon Heumos, Michael Heuer.
Simon Heumos is currently the sole developer.
Many thanks to all who have helped out and contributed along the way, including (but not limited to)*:
| Name | Affiliation |
| ---------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Philipp Ehmele | Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany |
| Gisela Gabernet | Quantitative Biology Center (QBiC) Tübingen, University of Tübingen, Germany
Department of Pathology, Yale School of Medicine, New Haven, USA |
| Erik Garrison | University of Tennessee Health Science Center, Memphis, Tennessee, TN, USA |
| Andrea Guarracino | University of Tennessee Health Science Center, Memphis, Tennessee, TN, USA |
| Friederike Hanssen | Seqera |
| Peter Heringer | Quantitative Biology Center (QBiC) Tübingen, University of Tübingen, Germany
Biomedical Data Science, Department of Computer Science, University of Tübingen, Germany |
| Michael Heuer | Mammoth Biosciences, Inc., San Francisco, CA, USA |
| Lukas Heumos | Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
Institute of Lung Biology and Disease and Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany |
| Simon Heumos | Quantitative Biology Center (QBiC) Tübingen, University of Tübingen, Germany
Biomedical Data Science, Department of Computer Science, University of Tübingen, Germany |
| Susanne Jodoin | Quantitative Biology Center (QBiC) Tübingen, University of Tübingen, Germany |
| Júlia Mir Pedrol | Quantitative Biology Center (QBiC) Tübingen, University of Tübingen, Germany |
* Listed in alphabetical order
Acknowledgments
Contributions and Support
If you would like to contribute to this pipeline, please see the contributing guidelines.
For further information or help, don't hesitate to get in touch on the Slack #pangenome channel (you can join with this invite), or contact me Simon Heumos.
Citations
If you use nf-core/pangenome for your analysis, please cite the Bioinformatics manuscript using the following doi: 10.1093/bioinformatics/btae609. You can also cite the current release's doi: 10.5281/zenodo.8202636.
An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md file.
You can cite the nf-core publication as follows:
The nf-core framework for community-curated bioinformatics pipelines.
Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.
Nat Biotechnol. 2020 Feb 13. doi: 10.1038/s41587-020-0439-x.
Changelog
Owner
- Name: nf-core
- Login: nf-core
- Kind: organization
- Email: core@nf-co.re
- Website: http://nf-co.re
- Twitter: nf_core
- Repositories: 84
- Profile: https://github.com/nf-core
A community effort to collect a curated set of analysis pipelines built using Nextflow.
Citation (CITATIONS.md)
# nf-core/pangenome: Citations ## [nf-core](https://pubmed.ncbi.nlm.nih.gov/32055031/) > Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020 Mar;38(3):276-278. doi: https://10.1038/s41587-020-0439-x. PubMed PMID: 32055031. ## [Nextflow](https://pubmed.ncbi.nlm.nih.gov/28398311/) > Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017 Apr 11;35(4):316-319. doi: https://10.1038/nbt.3820. PubMed PMID: 28398311. ## Pipeline tools - [GFAFFIX](https://github.com/marschall-lab/GFAffix) > Liao W, Asri M, Ebler J, Doerr D, Haukness M, Hickey G, Lu S, Lucas J K, Monlong J, Abel H J, Buonaiuto S, Chang X H, Cheng H, Chu J, Colonna V, Eizenga J M, Feng X, Fischer C, Fulton R S, Garg S, Groza C, Guarracino A, Harvey W T, Heumos S, Howe K, Jain M, Lu T, Markello C, Martin F J, Mitchell M W, Munson K M, Mwaniki M N, Novak A M, Olsen H E, Pesout T, Porubsky D, Prins P, Sibbesen J A, Tomlinson C, Villani F, Vollger M R, Human Pangenome Reference Consortium, Bourque G, Chaisson M J P, Flicek P, Phillippy A M, Zook J M, Eichler E E,Haussler D, Jarvis E D, Miga K H, Wang T, Garrison E, Marschall T, Hall I, Li H, Paten B. A Draft Human Pangenome Reference. Nature 617, 312–324 (2023). https://doi.org/10.1038/s41586-023-05896-x. - [MultiQC](https://pubmed.ncbi.nlm.nih.gov/27312411/) > Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016 Oct 1;32(19):3047-8. doi: https://10.1093/bioinformatics/btw354. Epub 2016 Jun 16. PubMed PMID: 27312411; PubMed Central PMCID: PMC5039924. - [NET2COMMUNITIES](https://github.com/pangenome/pggb/blob/master/scripts/net2communities.py) > Traag, VA, Waltman, L & van Eck, NJ. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep 9, 5233 (2019). https://doi.org/10.1038/s41598-019-41695-z. - [ODGI](https://pubmed.ncbi.nlm.nih.gov/35552372/) > Guarracino A, Heumos S, Nahnsen S, Prins P, Garrison E. ODGI: understanding pangenome graphs. Bioinformatics. Volume 38. Issue 13. July 2022. Pages 3319–3326. https://doi.org/10.1093/bioinformatics/btac308. > Heumos S, Guarracino A, Schmelzle J N M, Li J, Zhang Z, Nahnsen S, Prins P, Garrison E. Pangenome graph layout by Path-Guided Stochastic Gradient Descent. bioRxiv. https://www.biorxiv.org/content/10.1101/2023.09.22.558964v1. - [PGGB](https://www.biorxiv.org/content/10.1101/2023.04.05.535718v1) > Garrison E, Guarracino A, Heumos S, Villani F, Bao Z, Tattini L, Hagmann J, Vorbrugg S, Marco-Sola S, Kubica S, Ashbrook D G, Thorell K, Rusholme-Pilcher R L, Liti G, Rudbeck E, Nahnsen S, Yang Z, Moses M N, Nobrega F L, Wu Y, Chen H, de Ligt J, Sudmant P H, Soranzo N, Colonna V, Williams R W, Prins P. Building pangenome graphs. bioRxiv. 2023.04.05.535718. doi: https://doi.org/10.1101/2023.04.05.535718. > Guarracino A, Buonaiuto S, de Lima L G, Potapova T, Rhie A, Koren S, Rubinstein B, Fischer C, Human Pangenome Reference Consortium, Gerton J L, Phillippy A M, Colonna V, Garrison E. Recombination between heterologous human acrocentric chromosomes. Nature 617, 335–343 (2023). https://doi.org/10.1038/s41586-023-05976-y. > Liao W, Asri M, Ebler J, Doerr D, Haukness M, Hickey G, Lu S, Lucas J K, Monlong J, Abel H J, Buonaiuto S, Chang X H, Cheng H, Chu J, Colonna V, Eizenga J M, Feng X, Fischer C, Fulton R S, Garg S, Groza C, Guarracino A, Harvey W T, Heumos S, Howe K, Jain M, Lu T, Markello C, Martin F J, Mitchell M W, Munson K M, Mwaniki M N, Novak A M, Olsen H E, Pesout T, Porubsky D, Prins P, Sibbesen J A, Tomlinson C, Villani F, Vollger M R, Human Pangenome Reference Consortium, Bourque G, Chaisson M J P, Flicek P, Phillippy A M, Zook J M, Eichler E E,Haussler D, Jarvis E D, Miga K H, Wang T, Garrison E, Marschall T, Hall I, Li H, Paten B. A Draft Human Pangenome Reference. Nature 617, 312–324 (2023). https://doi.org/10.1038/s41586-023-05896-x. - [SAMTOOLS](https://pubmed.ncbi.nlm.nih.gov/19505943/) > Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009 Aug 15;25(16):2078-9. doi: https://10.1093/bioinformatics/btp352. Epub 2009 Jun 8. PMID: 19505943; PMCID: PMC2723002. - [SEQWISH](https://pubmed.ncbi.nlm.nih.gov/36448683/) > Garrison E, Guarracino A. Unbiased pangenome graphs. Bioinformatics. 2023 Jan 1;39(1):btac743. doi: https://10.1093/bioinformatics/btac743. PMID: 36448683; PMCID: PMC9805579. - [SMOOTHXG](https://www.biorxiv.org/content/10.1101/2023.04.05.535718v1) > Garrison E, Guarracino A, Heumos S, Villani F, Bao Z, Tattini L, Hagmann J, Vorbrugg S, Marco-Sola S, Kubica S, Ashbrook D G, Thorell K, Rusholme-Pilcher R L, Liti G, Rudbeck E, Nahnsen S, Yang Z, Moses M N, Nobrega F L, Wu Y, Chen H, de Ligt J, Sudmant P H, Soranzo N, Colonna V, Williams R W, Prins P. Building pangenome graphs. bioRxiv. 2023.04.05.535718. doi: https://doi.org/10.1101/2023.04.05.535718. - [VCFLIB](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009123) > Garrison E, Kronenberg ZN, Dawson ET, Pedersen BS, Prins P (2022) A spectrum of free software tools for processing the VCF variant call format: vcflib, bio-vcf, cyvcf2, hts-nim and slivar. PLOS Computational Biology 18(5): e1009123. https://doi.org/10.1371/journal.pcbi.1009123. - [VG](https://pubmed.ncbi.nlm.nih.gov/30125266/) > Garrison E et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nature biotechnology vol. 36,9 (2018): 875-879. doi: https://10.1038/nbt.4227. - [WFMASH](https://github.com/waveygang/wfmash) > Guarracino A, Mwaniki N, Marco-Sola S, Garrison E. Wfmash: whole-chromosome pairwise alignment using the hierarchical wavefront algorithm. 2024. https://github.com/waveygang/wfmash. ## Software packaging/containerisation tools - [Anaconda](https://anaconda.com) > Anaconda Software Distribution. Computer software. Vers. 2-2.4.0. Anaconda, Nov. 2016. Web. - [Bioconda](https://pubmed.ncbi.nlm.nih.gov/29967506/) > Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J; Bioconda Team. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018 Jul;15(7):475-476. doi: https://10.1038/s41592-018-0046-7. PubMed PMID: 29967506. - [BioContainers](https://pubmed.ncbi.nlm.nih.gov/28379341/) > da Veiga Leprevost F, Grüning B, Aflitos SA, Röst HL, Uszkoreit J, Barsnes H, Vaudel M, Moreno P, Gatto L, Weber J, Bai M, Jimenez RC, Sachsenberg T, Pfeuffer J, Alvarez RV, Griss J, Nesvizhskii AI, Perez-Riverol Y. BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics. 2017 Aug 15;33(16):2580-2582. doi: https://10.1093/bioinformatics/btx192. PubMed PMID: 28379341; PubMed Central PMCID: PMC5870671. - [Docker](https://dl.acm.org/doi/10.5555/2600239.2600241) > Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux Journal, 2014(239), 2. doi: https://10.5555/2600239.2600241. - [Singularity](https://pubmed.ncbi.nlm.nih.gov/28494014/) > Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLoS One. 2017 May 11;12(5):e0177459. doi: https://10.1371/journal.pone.0177459. eCollection 2017. PubMed PMID: 28494014; PubMed Central PMCID: PMC5426675.
GitHub Events
Total
- Create event: 13
- Release event: 1
- Issues event: 18
- Watch event: 23
- Delete event: 3
- Issue comment event: 94
- Push event: 28
- Pull request review comment event: 22
- Pull request review event: 31
- Pull request event: 56
- Fork event: 3
Last Year
- Create event: 13
- Release event: 1
- Issues event: 18
- Watch event: 23
- Delete event: 3
- Issue comment event: 94
- Push event: 28
- Pull request review comment event: 22
- Pull request review event: 31
- Pull request event: 56
- Fork event: 3
Committers
Last synced: over 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| subwaystation | s****s@q****e | 374 |
| nf-core-bot | c****e@n****e | 21 |
| AndreaGuarracino | a****o@o****m | 12 |
| Lukas Heumos | l****s@p****t | 10 |
| Michael L Heuer | h****h@a****g | 6 |
| Lukas Heumos | l****s@g****m | 2 |
| James A. Fellows Yates | j****3@g****m | 1 |
| kevinmenden | k****n@t****e | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 54
- Total pull requests: 118
- Average time to close issues: 7 months
- Average time to close pull requests: 12 days
- Total issue authors: 13
- Total pull request authors: 9
- Average comments per issue: 1.91
- Average comments per pull request: 1.53
- Merged pull requests: 84
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 9
- Pull requests: 27
- Average time to close issues: 7 days
- Average time to close pull requests: 3 days
- Issue authors: 5
- Pull request authors: 4
- Average comments per issue: 1.56
- Average comments per pull request: 1.89
- Merged pull requests: 17
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- subwaystation (36)
- heuermh (7)
- mictadlo (5)
- OZTaekOppa (1)
- DPI-NZ (1)
- nvnieuwk (1)
- msgr0 (1)
- dbrami (1)
- maxulysse (1)
- JWDebler (1)
- SarahBeecroft (1)
- jen-reeve (1)
- chenhijy (1)
- apeltzer (1)
- Zethson (1)
Pull Request Authors
- subwaystation (100)
- nf-core-bot (31)
- heuermh (13)
- AndreaGuarracino (2)
- KevinMenden (2)
- adamrtalbot (1)
- ewels (1)
- Zethson (1)
- nvnieuwk (1)
- heringerp (1)
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- conda-incubator/setup-miniconda v2 composite
- conda-incubator/setup-miniconda v2 composite
- mshick/add-pr-comment v1 composite
- actions/checkout v2 composite
- nf-core/setup-nextflow v1 composite
- technote-space/get-diff-action v4 composite
- actions/checkout v2 composite
- actions/checkout v1 composite
- actions/setup-node v1 composite
- actions/setup-python v1 composite
- actions/upload-artifact v2 composite
- mshick/add-pr-comment v1 composite
- dawidd6/action-download-artifact v2 composite
- marocchino/sticky-pull-request-comment v2 composite
- actions/stale v7 composite
- actions/checkout v3 composite
- actions/setup-node v3 composite
- gfaffix 0.1.5.*
- multiqc 1.20.*
- odgi 0.8.4.*
- odgi 0.8.4.*
- odgi 0.8.4.*
- odgi 0.8.4.*
- odgi 0.8.4.*
- odgi 0.8.4.*
- odgi 0.8.4.*
- odgi 0.8.4.*
- odgi 0.8.4.*
- htslib 1.19.1.*
- samtools 1.19.2.*
- seqwish 0.7.9.*
- smoothxg 0.7.2.*
- tabix 1.11.*
- wfmash 0.12.6.*
- actions/setup-python 0a5c61591373683505ea898e09a3ea4f39ef2b9c composite
- eWaterCycle/setup-singularity 931d4e31109e875b13309ae1d07c70ca8fbc8537 composite
- nf-core/setup-nextflow b9f764e8ba5c76b712ace14ecbfcef0e40ae2dd8 composite
- actions/setup-python 0a5c61591373683505ea898e09a3ea4f39ef2b9c composite
- rzr/fediverse-action master composite
- zentered/bluesky-post-action 80dbe0a7697de18c15ad22f4619919ceb5ccf597 composite