taxprofiler
Highly parallelised multi-taxonomic profiling of shotgun short- and long-read metagenomic data
Science Score: 57.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 17 DOI reference(s) in README -
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (9.4%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
Highly parallelised multi-taxonomic profiling of shotgun short- and long-read metagenomic data
Basic Info
- Host: GitHub
- Owner: nf-core
- License: mit
- Language: Nextflow
- Default Branch: master
- Homepage: https://nf-co.re/taxprofiler
- Size: 16.1 MB
Statistics
- Stars: 161
- Watchers: 169
- Forks: 56
- Open Issues: 47
- Releases: 16
Topics
Metadata Files
README.md
Introduction
nf-core/taxprofiler is a bioinformatics best-practice analysis pipeline for taxonomic classification and profiling of shotgun short- and long-read metagenomic data. It allows for in-parallel taxonomic identification of reads or taxonomic abundance estimation with multiple classification and profiling tools against multiple databases, and produces standardised output tables for facilitating results comparison between different tools and databases.
Pipeline summary

- Read QC (
FastQCorfalcoas an alternative option) - Performs optional read pre-processing
- Adapter clipping and merging (short-read: fastp, AdapterRemoval2; long-read: porechop, Porechop_ABI)
- Low complexity and quality filtering (short-read: bbduk, PRINSEQ++; long-read: Filtlong), Nanoq
- Host-read removal (short-read: BowTie2; long-read: Minimap2)
- Run merging
- Supports statistics metagenome coverage estimation (Nonpareil) and for host-read removal (Samtools)
- Performs taxonomic classification and/or profiling using one or more of:
- Perform optional post-processing with:
- Standardises output tables (
Taxpasta) - Present QC for raw reads (
MultiQC) - Plotting Kraken2, Centrifuge, Kaiju and MALT results (
Krona)
Usage
[!NOTE] If you are new to Nextflow and nf-core, please refer to this page on how to set-up Nextflow. Make sure to test your setup with
-profile testbefore running the workflow on actual data.
First, prepare a samplesheet with your input data that looks as follows:
csv title="samplesheet.csv"
sample,run_accession,instrument_platform,fastq_1,fastq_2,fasta
2612,run1,ILLUMINA,2612_run1_R1.fq.gz,,
2612,run2,ILLUMINA,2612_run2_R1.fq.gz,,
2612,run3,ILLUMINA,2612_run3_R1.fq.gz,2612_run3_R2.fq.gz,
Each row represents a fastq file (single-end), a pair of fastq files (paired end), or a fasta (with long reads).
Additionally, you will need a database sheet that looks as follows:
csv title="databases.csv"
tool,db_name,db_params,db_path
kraken2,db2,--quick,/<path>/<to>/kraken2/testdb-kraken2.tar.gz
metaphlan,db1,,/<path>/<to>/metaphlan/metaphlan_database/
That includes directories or .tar.gz archives containing databases for the tools you wish to run the pipeline against.
Now, you can run the pipeline using:
bash
nextflow run nf-core/taxprofiler \
-profile <docker/singularity/.../institute> \
--input samplesheet.csv \
--databases databases.csv \
--outdir <OUTDIR> \
--run_kraken2 --run_metaphlan
[!WARNING] Please provide pipeline parameters via the CLI or Nextflow
-params-fileoption. Custom config files including those provided by the-cNextflow option can be used to provide any configuration except for parameters; see docs.
For more details and further functionality, please refer to the usage documentation and the parameter documentation.
Pipeline output
To see the results of an example test run with a full size dataset refer to the results tab on the nf-core website pipeline page. For more details about the output files and reports, please refer to the output documentation.
Credits
nf-core/taxprofiler was originally written by James A. Fellows Yates, Sofia Stamouli, Moritz E. Beber, Lili Andersson-Li, and the nf-core/taxprofiler team.
Team
We thank the following people for their contributions to the development of this pipeline:
- Lauri Mesilaakso
- Tanja Normark
- Maxime Borry
- Thomas A. Christensen II
- Jianhong Ou
- Rafal Stepien
- Mahwash Jamy
- Alex Caswell
- Aidan Epstein
Acknowledgments
We also are grateful for the feedback and comments from:
- The general nf-core/community
And specifically to
❤️ also goes to Zandra Fagernäs for the logo.
Contributions and Support
If you would like to contribute to this pipeline, please see the contributing guidelines.
For further information or help, don't hesitate to get in touch on the Slack #taxprofiler channel (you can join with this invite).
Citations
If you use nf-core/taxprofiler for your analysis, please cite it using the following doi: 10.1101/2023.10.20.563221.
Stamouli, S., Beber, M. E., Normark, T., Christensen II, T. A., Andersson-Li, L., Borry, M., Jamy, M., nf-core community, & Fellows Yates, J. A. (2023). nf-core/taxprofiler: Highly parallelised and flexible pipeline for metagenomic taxonomic classification and profiling. In bioRxiv (p. 2023.10.20.563221). https://doi.org/10.1101/2023.10.20.563221
For the latest version of the code, cite the Zenodo doi: 10.5281/zenodo.7728364
An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md file.
You can cite the nf-core publication as follows:
The nf-core framework for community-curated bioinformatics pipelines.
Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.
Nat Biotechnol. 2020 Feb 13. doi: 10.1038/s41587-020-0439-x.
Owner
- Name: nf-core
- Login: nf-core
- Kind: organization
- Email: core@nf-co.re
- Website: http://nf-co.re
- Twitter: nf_core
- Repositories: 84
- Profile: https://github.com/nf-core
A community effort to collect a curated set of analysis pipelines built using Nextflow.
Citation (CITATIONS.md)
# nf-core/taxprofiler: Citations ## [nf-core](https://pubmed.ncbi.nlm.nih.gov/32055031/) > Ewels, P. A., Peltzer, A., Fillinger, S., Patel, H., Alneberg, J., Wilm, A., Garcia, M. U., Di Tommaso, P., & Nahnsen, S. (2020). The nf-core framework for community-curated bioinformatics pipelines. In Nature Biotechnology (Vol. 38, Issue 3). https://doi.org/10.1038/s41587-020-0439-x ## [Nextflow](https://pubmed.ncbi.nlm.nih.gov/28398311/) > Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E., & Notredame, C. (2017). Nextflow enables reproducible computational workflows. In Nature Biotechnology (Vol. 35, Issue 4). https://doi.org/10.1038/nbt.3820 ## Pipeline tools - [FastQC](https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) > Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. - [MultiQC](https://pubmed.ncbi.nlm.nih.gov/27312411/) > Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19). https://doi.org/10.1093/bioinformatics/btw354 - [falco](https://doi.org/10.12688/f1000research.21142.2) > de Sena Brandine, G., & Smith, A. D. (2021). Falco: high-speed FastQC emulation for quality control of sequencing data. F1000Research, 8(1874), 1874. https://doi.org/10.12688/f1000research.21142.2 - [fastp](https://doi.org/10.1093/bioinformatics/bty560) > Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics , 34(17), i884–i890. https://doi.org/10.1093/bioinformatics/bty560 - [AdapterRemoval2](https://doi.org/10.1186/s13104-016-1900-2) > Schubert, M., Lindgreen, S., & Orlando, L. (2016). AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Research Notes, 9, 88. https://doi.org/10.1186/s13104-016-1900-2 - [Nonpareil](https://doi.org/10.1128/mSystems.00039-18) - Rodriguez-R, L. M., Gunturu, S., Tiedje, J. M., Cole, J. R., & Konstantinidis, K. T. (2018). Nonpareil 3: Fast Estimation of Metagenomic Coverage and Sequence Diversity. mSystems, 3(3). https://doi.org/10.1128/mSystems.00039-18 - [Porechop](https://github.com/rrwick/Porechop) > Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Completing bacterial genome assemblies with multiplex MinION sequencing. Microbial Genomics, 3(10), e000132. https://doi.org/10.1099/mgen.0.000132 - [Porechop_ABI](https://github.com/bonsai-team/Porechop_ABI) > Bonenfant, Q., Noé, L., & Touzet, H. (2023). Porechop_ABI: discovering unknown adapters in Oxford Nanopore Technology sequencing reads for downstream trimming. Bioinformatics Advances, 3(1):vbac085. https://10.1093/bioadv/vbac085 - [Filtlong](https://github.com/rrwick/Filtlong) > Wick R (2021) Filtlong, URL: https://github.com/rrwick/Filtlong - [nanoq](https://github.com/esteinig/nanoq) > Steinig, E., & Coin, L. (2022). Nanoq: ultra-fast quality control for nanopore reads. Journal of Open Source Software, 7(69). https://doi.org/10.21105/joss.02991 - [BBTools](http://sourceforge.net/projects/bbmap/) > Bushnell B. (2022) BBMap, URL: http://sourceforge.net/projects/bbmap/ - [PRINSEQ++](https://doi.org/10.7287/peerj.preprints.27553v1) > Cantu, V. A., Sadural, J., & Edwards, R. (2019). PRINSEQ++, a multi-threaded tool for fast and efficient quality control and preprocessing of sequencing datasets (e27553v1). PeerJ Preprints. https://doi.org/10.7287/peerj.preprints.27553v1 - [Bowtie2](https://doi.org/10.1038/nmeth.1923) > Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923 - [minimap2](https://doi.org/10.1093/bioinformatics/bty191) > Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics , 34(18), 3094–3100. https://doi.org/10.1093/bioinformatics/bty191 - [SAMTools](https://doi.org/10.1093/gigascience/giab008) > Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2). https://doi.org/10.1093/gigascience/giab008 - [Bracken](https://doi.org/10.7717/peerj-cs.104) > Lu, J., Breitwieser, F. P., Thielen, P., & Salzberg, S. L. (2017). Bracken: estimating species abundance in metagenomics data. PeerJ. Computer Science, 3(e104), e104. https://doi.org/10.7717/peerj-cs.104 - [Kraken2](https://doi.org/10.1186/s13059-019-1891-0) > Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0 - [KrakenUniq](https://doi.org/10.1186/s13059-018-1568-0) > Breitwieser, F. P., Baker, D. N., & Salzberg, S. L. (2018). KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biology, 19(1), 198. https://doi.org/10.1186/s13059-018-1568-0 - [MetaPhlAn](https://doi.org/10.1038/s41587-023-01688-w) > Blanco-Míguez, A., Beghini, F., Cumbo, F., McIver, L. J., Thompson, K. N., Zolfo, M., Manghi, P., Dubois, L., Huang, K. D., Thomas, A. M., Nickols, W. A., Piccinno, G., Piperni, E., Punčochář, M., Valles-Colomer, M., Tett, A., Giordano, F., Davies, R., Wolf, J., … Segata, N. (2023). Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nature Biotechnology, 1–12. https://doi.org/10.1038/s41587-023-01688-w - [MALT](https://doi.org/10.1038/s41559-017-0446-6) > Vågene, Å. J., Herbig, A., Campana, M. G., Robles García, N. M., Warinner, C., Sabin, S., Spyrou, M. A., Andrades Valtueña, A., Huson, D., Tuross, N., Bos, K. I., & Krause, J. (2018). Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nature Ecology & Evolution, 2(3), 520–528. https://doi.org/10.1038/s41559-017-0446-6 - [MEGAN](https://doi.org/10.1371/journal.pcbi.1004957) > Huson, D. H., Beier, S., Flade, I., Górska, A., El-Hadidi, M., Mitra, S., Ruscheweyh, H.-J., & Tappu, R. (2016). MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. PLoS Computational Biology, 12(6), e1004957. https://doi.org/10.1371/journal.pcbi.1004957 - [DIAMOND](https://doi.org/10.1038/nmeth.3176) > Buchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12(1), 59–60. https://doi.org/10.1038/nmeth.3176 - [Centrifuge](https://doi.org/10.1101/gr.210641.116) > Kim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Research, 26(12), 1721–1729. https://doi.org/10.1101/gr.210641.116 - [Kaiju](https://doi.org/10.1038/ncomms11257) > Menzel, P., Ng, K. L., & Krogh, A. (2016). Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nature Communications, 7, 11257. https://doi.org/10.1038/ncomms11257 - [mOTUs](https://doi.org/10.1186/s40168-022-01410-z) > Ruscheweyh, H.-J., Milanese, A., Paoli, L., Karcher, N., Clayssen, Q., Keller, M. I., Wirbel, J., Bork, P., Mende, D. R., Zeller, G., & Sunagawa, S. (2022). Cultivation-independent genomes greatly expand taxonomic-profiling capabilities of mOTUs across various environments. Microbiome, 10(1), 212. https://doi.org/10.1186/s40168-022-01410-z - [KMCP](https://doi.org/10.1093/bioinformatics/btac845) > Shen, W., Xiang, H., Huang, T., Tang, H., Peng, M., Cai, D., Hu, P., & Ren, H. (2023). KMCP: accurate metagenomic profiling of both prokaryotic and viral populations by pseudo-mapping. Bioinformatics (Oxford, England), 39(1). https://doi.org/10.1093/bioinformatics/btac845 - [ganon](https://doi.org/10.1093/bioinformatics/btaa458) > Piro, V. C., Dadi, T. H., Seiler, E., Reinert, K., & Renard, B. Y. (2020). Ganon: Precise metagenomics classification against large and up-to-date sets of reference sequences. Bioinformatics (Oxford, England), 36(Suppl_1), i12–i20. https://doi.org/10.1093/bioinformatics/btaa458 - [Krona](https://doi.org/10.1186/1471-2105-12-385) > Ondov, B. D., Bergman, N. H., & Phillippy, A. M. (2011). Interactive metagenomic visualization in a Web browser. BMC Bioinformatics, 12. https://doi.org/10.1186/1471-2105-12-385 - [TAXPASTA](https://doi.org/10.21105/joss.05627) > Beber, M. E., Borry, M., Stamouli, S., & Fellows Yates, J. A. (2023). TAXPASTA: TAXonomic Profile Aggregation and STAndardisation. Journal of Open Source Software, 8(87), 5627. https://doi.org/10.21105/joss.05627 ## Software packaging/containerisation tools - [Anaconda](https://anaconda.com) > Anaconda Software Distribution. Computer software. Vers. 2-2.4.0. Anaconda, Nov. 2016. Web. - [Bioconda](https://pubmed.ncbi.nlm.nih.gov/29967506/) > Dale, R., Grüning, B., Sjödin, A., Rowe, J., Chapman, B. A., Tomkins-Tinch, C. H., Valieris, R., Batut, B., Caprez, A., Cokelaer, T., Yusuf, D., Beauchamp, K. A., Brinda, K., Wollmann, T., Corguillé, G. Le, Ryan, D., Bretaudeau, A., Hoogstrate, Y., Pedersen, B. S., … Köster, J. (2018). Bioconda: Sustainable and comprehensive software distribution for the life sciences. Nature Methods, 15(7). https://doi.org/10.1038/s41592-018-0046-7 - [BioContainers](https://pubmed.ncbi.nlm.nih.gov/28379341/) > Da Veiga Leprevost, F., Grüning, B. A., Alves Aflitos, S., Röst, H. L., Uszkoreit, J., Barsnes, H., Vaudel, M., Moreno, P., Gatto, L., Weber, J., Bai, M., Jimenez, R. C., Sachsenberg, T., Pfeuffer, J., Vera Alvarez, R., Griss, J., Nesvizhskii, A. I., & Perez-Riverol, Y. (2017). BioContainers: An open-source and community-driven framework for software standardization. Bioinformatics, 33(16). https://doi.org/10.1093/bioinformatics/btx192 - [Docker](https://dl.acm.org/doi/10.5555/2600239.2600241) > Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux Journal, 2014(239), 2. doi: 10.5555/2600239.2600241. - [Singularity](https://pubmed.ncbi.nlm.nih.gov/28494014/) > Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity: Scientific containers for mobility of compute. PLoS ONE, 12(5). https://doi.org/10.1371/journal.pone.0177459 ## Data - [Maixner (2021)](https://doi.org/10.1016/j.cub.2021.09.031) (CI Test Data) > Maixner, F., Sarhan, M. S., Huang, K. D., Tett, A., Schoenafinger, A., Zingale, S., Blanco-Míguez, A., Manghi, P., Cemper-Kiesslich, J., Rosendahl, W., Kusebauch, U., Morrone, S. R., Hoopmann, M. R., Rota-Stabelli, O., Rattei, T., Moritz, R. L., Oeggl, K., Segata, N., Zink, A., … Kowarik, K. (2021). Hallstatt miners consumed blue cheese and beer during the Iron Age and retained a non-Westernized gut microbiome until the Baroque period. Current Biology, 31(23). https://doi.org/10.1016/j.cub.2021.09.031 - [Meslier (2022)](https://doi.org/10.1038/s41597-022-01762-z) (AWS Full Test data) > Meslier, V., Quinquis, B., Da Silva, K., Plaza Oñate, F., Pons, N., Roume, H., Podar, M., & Almeida, M. (2022). Benchmarking second and third-generation sequencing platforms for microbial metagenomics. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01762-z
GitHub Events
Total
- Create event: 33
- Release event: 3
- Issues event: 48
- Watch event: 20
- Delete event: 34
- Issue comment event: 298
- Push event: 202
- Pull request event: 109
- Pull request review event: 177
- Pull request review comment event: 202
- Fork event: 21
Last Year
- Create event: 33
- Release event: 3
- Issues event: 48
- Watch event: 20
- Delete event: 34
- Issue comment event: 298
- Push event: 202
- Pull request event: 109
- Pull request review event: 177
- Pull request review comment event: 202
- Fork event: 21
Committers
Last synced: about 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| James Fellows Yates | j****3@g****m | 574 |
| sofstam | s****i@s****e | 186 |
| LilyAnderssonLee | l****e@g****m | 119 |
| Sofia Stamouli | 9****m | 90 |
| Moritz E. Beber | m****r@p****t | 78 |
| Lili Andersson-Li | 6****e | 55 |
| ljmesi | 3****i | 29 |
| nf-core-bot | c****e@n****e | 28 |
| Thomas A. Christensen II | 2****X | 14 |
| JIANHONG OU | j****g | 11 |
| Mahwash Jamy | m****y@g****m | 9 |
| Rafal Stepien | 4****n | 5 |
| maxibor | m****y@g****m | 4 |
| Lauri Mesilaakso | j****o@g****m | 3 |
| hkaspersen | h****n@p****m | 3 |
| Rafal Stepien | r****5@g****m | 3 |
| Husen M. Umer | h****g | 2 |
| Håkon Kaspersen | h****n@v****o | 2 |
| Rob Syme | r****e@g****m | 2 |
| Mahwash Jamy | 4****y | 1 |
| Alex Hübner | a****r@g****m | 1 |
| ZandraFagernas | 4****s | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 144
- Total pull requests: 263
- Average time to close issues: 4 months
- Average time to close pull requests: 11 days
- Total issue authors: 42
- Total pull request authors: 22
- Average comments per issue: 2.13
- Average comments per pull request: 2.04
- Merged pull requests: 194
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 31
- Pull requests: 77
- Average time to close issues: 13 days
- Average time to close pull requests: 6 days
- Issue authors: 17
- Pull request authors: 14
- Average comments per issue: 1.0
- Average comments per pull request: 1.53
- Merged pull requests: 46
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- jfy133 (41)
- sofstam (24)
- LilyAnderssonLee (15)
- MajoroMask (8)
- muniheart (4)
- alexhbnr (4)
- Midnighter (4)
- artur-matysik (4)
- prototaxites (3)
- SannaAb (3)
- erinyoung (2)
- AnotherSimon (2)
- kneubehl (1)
- vmkalbskopf (1)
- maxibor (1)
Pull Request Authors
- jfy133 (104)
- LilyAnderssonLee (66)
- sofstam (47)
- nf-core-bot (16)
- Midnighter (4)
- muniheart (3)
- mashehu (3)
- mirpedrol (2)
- sateeshperi (2)
- AlexHoratio (2)
- vmikk (2)
- husensofteng (2)
- ilight1542 (1)
- microlei (1)
- maxibor (1)
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- actions/upload-artifact v3 composite
- nf-core/tower-action v3 composite
- actions/upload-artifact v3 composite
- nf-core/tower-action v3 composite
- mshick/add-pr-comment v1 composite
- Wandalen/wretry.action v1.0.11 composite
- actions/checkout v3 composite
- actions/checkout v2 composite
- nf-core/setup-nextflow v1 composite
- actions/checkout v3 composite
- actions/setup-node v3 composite
- actions/checkout v3 composite
- actions/setup-node v3 composite
- actions/setup-python v4 composite
- actions/upload-artifact v3 composite
- mshick/add-pr-comment v1 composite
- nf-core/setup-nextflow v1 composite
- psf/black stable composite
- dawidd6/action-download-artifact v2 composite
- marocchino/sticky-pull-request-comment v2 composite
- actions/stale v7 composite
- actions/setup-python v4 composite
- rzr/fediverse-action master composite
- zentered/bluesky-post-action v0.0.2 composite