SciMLExpectations
Fast uncertainty quantification for scientific machine learning (SciML) and differential equations
Science Score: 54.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
✓Committers with academic emails
2 of 25 committers (8.0%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.1%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
Fast uncertainty quantification for scientific machine learning (SciML) and differential equations
Basic Info
- Host: GitHub
- Owner: SciML
- License: other
- Language: Julia
- Default Branch: master
- Homepage: https://docs.sciml.ai/SciMLExpectations/stable/
- Size: 70.1 MB
Statistics
- Stars: 69
- Watchers: 7
- Forks: 20
- Open Issues: 34
- Releases: 18
Topics
Metadata Files
README.md
SciMLExpectations.jl: Expectated Values of Simulations and Uncertainty Quantification
This package is still under heavy construction. Use at your own risk!
SciMLExpectations.jl is a package for quantifying the uncertainties of simulations by calculating the expectations of observables with respect to input uncertainties. Its goal is to make it fast and easy to compute solution moments in a differentiable way in order to enable fast optimization under uncertainty.
Tutorials and Documentation
For information on using the package, see the stable documentation. Use the in-development documentation for the version of the documentation, which contains the unreleased features.
Example
```julia using SciMLExpectations, OrdinaryDiffEq, Distributions, Cubature
function eom!(du, u, p, t, A) du .= A * u end
u0 = [1.0, 1.0] tspan = (0.0, 3.0) p = [1.0; 2.0] A = [0.0 1.0; -p[1] -p[2]] prob = ODEProblem((du, u, p, t) -> eom!(du, u, p, t, A), u0, tspan, p) u0sdist = (Uniform(1, 10), truncated(Normal(3.0, 1), 0.0, 6.0)) gd = GenericDistribution(u0sdist...) cov(x, u, p) = x, p
sm = SystemMap(prob, Tsit5(), save_everystep = false)
analytical = (exp(A * tspan[end]) * [mean(d) for d in u0s_dist]) analytical ```
julia> analytical
2-element Vector{Float64}:
1.5433991194037804
-1.120209038276938
julia
g(sol, p) = sol[:, end]
exprob = ExpectationProblem(sm, g, cov, gd)
sol = solve(exprob, Koopman(); quadalg = CubatureJLh(),
ireltol = 1e-3, iabstol = 1e-3)
sol.u # Expectation of the states 1 and 2 at the final time point
2-element Vector{Float64}:
1.5433860531082695
-1.1201922503747408
Approximate error on the expectation
sol.resid
=
2-element Vector{Float64}: 7.193424502016654e-5 5.2074632876847327e-5 =#
Owner
- Name: SciML Open Source Scientific Machine Learning
- Login: SciML
- Kind: organization
- Email: contact@chrisrackauckas.com
- Website: https://sciml.ai
- Twitter: SciML_Org
- Repositories: 170
- Profile: https://github.com/SciML
Open source software for scientific machine learning
Citation (CITATION.bib)
@article{DifferentialEquations.jl-2017,
author = {Rackauckas, Christopher and Nie, Qing},
doi = {10.5334/jors.151},
journal = {The Journal of Open Research Software},
keywords = {Applied Mathematics},
note = {Exported from https://app.dimensions.ai on 2019/05/05},
number = {1},
pages = {},
title = {DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia},
url = {https://app.dimensions.ai/details/publication/pub.1085583166 and http://openresearchsoftware.metajnl.com/articles/10.5334/jors.151/galley/245/download/},
volume = {5},
year = {2017}
}
GitHub Events
Total
- Watch event: 4
- Delete event: 10
- Issue comment event: 14
- Push event: 8
- Pull request event: 31
- Fork event: 1
- Create event: 11
Last Year
- Watch event: 4
- Delete event: 10
- Issue comment event: 14
- Push event: 8
- Pull request event: 31
- Fork event: 1
- Create event: 11
Committers
Last synced: 8 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Chris Rackauckas | a****s@c****m | 96 |
| Adam R. Gerlach | a****1@a****m | 43 |
| CompatHelper Julia | c****y@j****g | 36 |
| ArnoStrouwen | a****n@t****e | 30 |
| Adam R Gerlach | a****1@u****l | 21 |
| lxvm | l****o@v****m | 12 |
| dependabot[bot] | 4****] | 8 |
| github-actions[bot] | 4****] | 5 |
| Anant Thazhemadam | a****m@g****m | 4 |
| agerlach | 5****h | 4 |
| txn2022 | 1****2 | 4 |
| Andrew Leonard | a****1@g****m | 3 |
| Chris de Graaf | me@c****v | 2 |
| Krishna Bhogaonker | c****q@g****m | 2 |
| Anshul Singhvi | a****7@s****u | 1 |
| David Widmann | d****n | 1 |
| Hendrik Ranocha | m****l@r****e | 1 |
| Julia TagBot | 5****t | 1 |
| Marcelo Forets | m****s@g****m | 1 |
| Pengfei Song | 6****2 | 1 |
| ScottPJones | s****s@a****u | 1 |
| Sharan Yalburgi | s****i@g****m | 1 |
| Vaibhav Kumar Dixit | v****t@g****m | 1 |
| owiecc | s****i@m****m | 1 |
| femtocleaner[bot] | f****] | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 42
- Total pull requests: 138
- Average time to close issues: 14 days
- Average time to close pull requests: about 2 months
- Total issue authors: 18
- Total pull request authors: 17
- Average comments per issue: 3.55
- Average comments per pull request: 0.52
- Merged pull requests: 95
- Bot issues: 0
- Bot pull requests: 78
Past Year
- Issues: 0
- Pull requests: 25
- Average time to close issues: N/A
- Average time to close pull requests: 6 days
- Issue authors: 0
- Pull request authors: 3
- Average comments per issue: 0
- Average comments per pull request: 0.04
- Merged pull requests: 7
- Bot issues: 0
- Bot pull requests: 20
Top Authors
Issue Authors
- agerlach (13)
- ArnoStrouwen (6)
- lakshaya17 (4)
- lindnemi (2)
- sdwfrost (2)
- owiecc (2)
- ChrisRackauckas (2)
- rfourquet (1)
- matteoettam09 (1)
- homocomputeris (1)
- txn2022 (1)
- evrenmturan (1)
- djinnome (1)
- S-Math (1)
- aml5600 (1)
Pull Request Authors
- github-actions[bot] (79)
- ArnoStrouwen (23)
- ChrisRackauckas (15)
- dependabot[bot] (13)
- agerlach (9)
- thazhemadam (4)
- christopher-dG (2)
- sharanry (2)
- 00krishna (2)
- aml5600 (1)
- txn2022 (1)
- ranocha (1)
- devmotion (1)
- Song921012 (1)
- mforets (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- julia 1 total
- Total dependent packages: 1
- Total dependent repositories: 0
- Total versions: 5
juliahub.com: SciMLExpectations
Fast uncertainty quantification for scientific machine learning (SciML) and differential equations
- Homepage: https://docs.sciml.ai/SciMLExpectations/stable/
- Documentation: https://docs.juliahub.com/General/SciMLExpectations/stable/
- License: MIT
-
Latest release: 2.3.0
published 8 months ago
Rankings
Dependencies
- actions/cache v1 composite
- actions/checkout v2 composite
- codecov/codecov-action v1 composite
- julia-actions/julia-buildpkg v1 composite
- julia-actions/julia-processcoverage v1 composite
- julia-actions/julia-runtest v1 composite
- julia-actions/setup-julia v1 composite
- julia-actions/setup-julia latest composite
- actions/checkout v2 composite
- codecov/codecov-action v1 composite
- julia-actions/julia-processcoverage v1 composite
- julia-actions/setup-julia latest composite
- actions/checkout v3 composite
- julia-actions/julia-buildpkg v1 composite
- julia-actions/julia-invalidations v1 composite
- julia-actions/setup-julia v1 composite
- JuliaRegistries/TagBot v1 composite
- actions/checkout v4 composite
- crate-ci/typos v1.16.23 composite