StochasticDiffEq

Solvers for stochastic differential equations which connect with the scientific machine learning (SciML) ecosystem

https://github.com/sciml/stochasticdiffeq.jl

Science Score: 54.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
    10 of 58 committers (17.2%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (9.9%) to scientific vocabulary

Keywords

adaptive differential-equations differentialequations hacktoberfest ito noise random random-differential-equations rde rode scientific-machine-learning sciml sde sode solvers stochastic stochastic-differential-equations stochastic-processes stratonovich

Keywords from Contributors

pde ode neural-ode dae dde ordinary-differential-equations partial-differential-equations neural-sde differential-algebraic-equations neural-differential-equations
Last synced: 6 months ago · JSON representation ·

Repository

Solvers for stochastic differential equations which connect with the scientific machine learning (SciML) ecosystem

Basic Info
  • Host: GitHub
  • Owner: SciML
  • License: other
  • Language: Julia
  • Default Branch: master
  • Homepage:
  • Size: 4.16 MB
Statistics
  • Stars: 298
  • Watchers: 12
  • Forks: 72
  • Open Issues: 105
  • Releases: 222
Topics
adaptive differential-equations differentialequations hacktoberfest ito noise random random-differential-equations rde rode scientific-machine-learning sciml sde sode solvers stochastic stochastic-differential-equations stochastic-processes stratonovich
Created over 9 years ago · Last pushed 6 months ago
Metadata Files
Readme License Citation

README.md

StochasticDiffEq.jl

Join the chat at https://gitter.im/JuliaDiffEq/Lobby Build Status Build status

StochasticDiffEq.jl is a component package in the DifferentialEquations ecosystem. It holds the stochastic differential equations solvers and utilities. While completely independent and usable on its own, users interested in using this functionality should check out DifferentialEquations.jl.

API

StochasticDiffEq.jl is part of the JuliaDiffEq common interface, but can be used independently of DifferentialEquations.jl. The only requirement is that the user passes an StochasticDiffEq.jl algorithm to solve. For example, we can solve the SDE tutorial from the docs using the SRIW1() algorithm:

julia using StochasticDiffEq α=1 β=1 u₀=1/2 f(u, p, t) = α*u g(u, p, t) = β*u dt = 1//2^(4) tspan = (0.0, 1.0) prob = SDEProblem(f, g, u₀, (0.0, 1.0)) sol = solve(prob, SRIW1())

The options for solve are defined in the common solver options page and are thoroughly explained in the ODE tutorial.

That example uses the out-of-place syntax f(u,p,t), while the inplace syntax (more efficient for systems of equations) is shown in the Lorenz example:

```julia function lorenz(du, u, p, t) du[1] = 10.0(u[2]-u[1]) du[2] = u[1](28.0-u[3]) - u[2] du[3] = u[1]u[2] - (8/3)*u[3] end

function σ_lorenz(du, u, p, t) du[1] = 3.0 du[2] = 3.0 du[3] = 3.0 end

probsdelorenz = SDEProblem(lorenz, σlorenz, [1.0, 0.0, 0.0], (0.0, 10.0)) sol = solve(probsde_lorenz) plot(sol, vars = (1, 2, 3)) ```

The problems default to diagonal noise. Non-diagonal noise can be added by setting the noise_prototype:

julia f = (du, u, p, t) -> du.=1.01u g = function (du, u, p, t) du[1, 1] = 0.3u[1] du[1, 2] = 0.6u[1] du[1, 3] = 0.9u[1] du[1, 4] = 0.12u[2] du[2, 1] = 1.2u[1] du[2, 2] = 0.2u[2] du[2, 3] = 0.3u[2] du[2, 4] = 1.8u[2] end prob = SDEProblem(f, g, ones(2), (0.0, 1.0), noise_rate_prototype = zeros(2, 4))

Colored noise can be set using an AbstractNoiseProcess. For example, we can set the underlying noise process to a GeometricBrownianMotionProcess via:

```julia μ = 1.0 σ = 2.0 W = GeometricBrownianMotionProcess(μ, σ, 0.0, 1.0, 1.0)

...

Define f,g,u0,tspan for a SDEProblem

...

prob = SDEProblem(f, g, u0, tspan, noise = W) ```

StochasticDiffEq.jl also handles solving random ordinary differential equations. This is shown in the RODE tutorial.

julia using StochasticDiffEq function f(u, p, t, W) 2u*sin(W) end u0 = 1.00 tspan = (0.0, 5.0) prob = RODEProblem(f, u0, tspan) sol = solve(prob, RandomEM(), dt = 1/100)

Available Solvers

For the list of available solvers, please refer to the DifferentialEquations.jl SDE Solvers page and the RODE Solvers page.

Owner

  • Name: SciML Open Source Scientific Machine Learning
  • Login: SciML
  • Kind: organization
  • Email: contact@chrisrackauckas.com

Open source software for scientific machine learning

Citation (CITATION.bib)

@article{DifferentialEquations.jl-2017,
 author = {Rackauckas, Christopher and Nie, Qing},
 doi = {10.5334/jors.151},
 journal = {The Journal of Open Research Software},
 keywords = {Applied Mathematics},
 note = {Exported from https://app.dimensions.ai on 2019/05/05},
 number = {1},
 pages = {},
 title = {DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia},
 url = {https://app.dimensions.ai/details/publication/pub.1085583166 and http://openresearchsoftware.metajnl.com/articles/10.5334/jors.151/galley/245/download/},
 volume = {5},
 year = {2017}
}

@article{rackauckas2017adaptive,
  title={Adaptive methods for stochastic differential equations via natural embeddings and rejection sampling with memory},
  author={Rackauckas, Christopher and Nie, Qing},
  journal={Discrete and continuous dynamical systems. Series B},
  volume={22},
  number={7},
  pages={2731},
  year={2017},
  publisher={NIH Public Access}
}

GitHub Events

Total
  • Create event: 33
  • Issues event: 5
  • Release event: 14
  • Watch event: 42
  • Delete event: 21
  • Issue comment event: 74
  • Push event: 93
  • Pull request review comment event: 26
  • Pull request review event: 29
  • Pull request event: 68
  • Fork event: 9
Last Year
  • Create event: 33
  • Issues event: 5
  • Release event: 14
  • Watch event: 42
  • Delete event: 21
  • Issue comment event: 74
  • Push event: 93
  • Pull request review comment event: 26
  • Pull request review event: 29
  • Pull request event: 68
  • Fork event: 9

Committers

Last synced: 8 months ago

All Time
  • Total Commits: 1,988
  • Total Committers: 58
  • Avg Commits per committer: 34.276
  • Development Distribution Score (DDS): 0.446
Past Year
  • Commits: 117
  • Committers: 12
  • Avg Commits per committer: 9.75
  • Development Distribution Score (DDS): 0.462
Top Committers
Name Email Commits
Chris Rackauckas a****s@c****m 1,102
deeepeshthakur d****r@g****m 318
Frank Schaefer f****r@u****h 184
Yingbo Ma m****5@g****m 64
David Widmann d****b@d****e 41
Ricardo Rosa r****a@g****m 32
Kanav Gupta k****0@g****m 31
Xingjian Guo x****3@n****u 26
Aayush Sabharwal a****l@g****m 16
CompatHelper Julia c****y@j****g 15
Oscar Smith o****h@g****m 14
github-actions[bot] 4****] 12
jClugstor j****n@g****m 12
dependabot[bot] 4****] 8
Tatsuhiro Onodera o****t@s****u 8
James Gardner j****1@g****m 8
ErikQQY 2****3@q****m 8
Sam Isaacson i****s 7
Takafumi Arakaki a****f@g****m 6
Hossein Pourbozorg p****g@g****m 6
Anas a****r@g****m 5
Elliot Saba s****t@g****m 5
Anant Thazhemadam a****m@g****m 4
Vedant Puri v****i@g****m 4
Hendrik Ranocha m****l@r****e 4
Sikorski s****i@z****e 4
Chris de Graaf me@c****v 3
femtocleaner[bot] f****] 3
Avik Pal a****l@m****u 3
hlw h****n@i****m 2
and 28 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 42
  • Total pull requests: 186
  • Average time to close issues: 4 months
  • Average time to close pull requests: about 1 month
  • Total issue authors: 24
  • Total pull request authors: 34
  • Average comments per issue: 10.43
  • Average comments per pull request: 0.91
  • Merged pull requests: 139
  • Bot issues: 0
  • Bot pull requests: 37
Past Year
  • Issues: 3
  • Pull requests: 59
  • Average time to close issues: about 23 hours
  • Average time to close pull requests: 4 days
  • Issue authors: 3
  • Pull request authors: 9
  • Average comments per issue: 1.67
  • Average comments per pull request: 0.29
  • Merged pull requests: 45
  • Bot issues: 0
  • Bot pull requests: 13
Top Authors
Issue Authors
  • ChrisRackauckas (11)
  • oameye (3)
  • axsk (3)
  • jebej (3)
  • rmsrosa (2)
  • TorkelE (2)
  • AayushSabharwal (1)
  • JuliaTagBot (1)
  • jack-dunham (1)
  • Jonas-a-Zimmermann (1)
  • stochasticguy (1)
  • apkille (1)
  • tbilitewski (1)
  • Lightup1 (1)
  • frankschae (1)
Pull Request Authors
  • ChrisRackauckas (65)
  • github-actions[bot] (27)
  • AayushSabharwal (13)
  • dependabot[bot] (10)
  • oscardssmith (9)
  • frankschae (6)
  • rmsrosa (6)
  • prbzrg (4)
  • oameye (4)
  • jClugstor (4)
  • isaacsas (3)
  • ranocha (3)
  • vpuri3 (3)
  • BenChung (2)
  • apkille (2)
Top Labels
Issue Labels
bug (8) new-algorithm (4) question (2)
Pull Request Labels
dependencies (10) github_actions (1)

Packages

  • Total packages: 1
  • Total downloads:
    • julia 4,102 total
  • Total dependent packages: 16
  • Total dependent repositories: 9
  • Total versions: 153
juliahub.com: StochasticDiffEq

Solvers for stochastic differential equations which connect with the scientific machine learning (SciML) ecosystem

  • Versions: 153
  • Dependent Packages: 16
  • Dependent Repositories: 9
  • Downloads: 4,102 Total
Rankings
Forks count: 2.3%
Dependent repos count: 3.3%
Average: 3.4%
Stargazers count: 3.6%
Dependent packages count: 4.2%
Last synced: 6 months ago

Dependencies

.github/workflows/CI.yml actions
  • actions/cache v1 composite
  • actions/checkout v2 composite
  • codecov/codecov-action v1 composite
  • julia-actions/julia-buildpkg v1 composite
  • julia-actions/julia-processcoverage v1 composite
  • julia-actions/julia-runtest v1 composite
  • julia-actions/setup-julia v1 composite
.github/workflows/Downstream.yml actions
  • actions/checkout v2 composite
  • codecov/codecov-action v1 composite
  • julia-actions/julia-buildpkg latest composite
  • julia-actions/julia-processcoverage v1 composite
  • julia-actions/setup-julia v1 composite
.github/workflows/Invalidations.yml actions
  • actions/checkout v3 composite
  • julia-actions/julia-buildpkg v1 composite
  • julia-actions/julia-invalidations v1 composite
  • julia-actions/setup-julia v1 composite
.github/workflows/TagBot.yml actions
  • JuliaRegistries/TagBot v1 composite
.github/workflows/CompatHelper.yml actions