ndarray-base-unary-reduce-strided1d-dispatch

Constructor for performing a reduction on an input ndarray.

https://github.com/stdlib-js/ndarray-base-unary-reduce-strided1d-dispatch

Science Score: 44.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (14.7%) to scientific vocabulary

Keywords

apply array call javascript ndarray node node-js nodejs reduce reduction stdlib strided tools vector
Last synced: 6 months ago · JSON representation ·

Repository

Constructor for performing a reduction on an input ndarray.

Basic Info
Statistics
  • Stars: 0
  • Watchers: 2
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Topics
apply array call javascript ndarray node node-js nodejs reduce reduction stdlib strided tools vector
Created 10 months ago · Last pushed 9 months ago
Metadata Files
Readme Changelog Contributing License Code of conduct Citation Security

README.md

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

UnaryStrided1dDispatch

NPM version Build Status Coverage Status <!-- dependencies -->

Constructor for performing a reduction on an input ndarray.

## Installation ```bash npm install @stdlib/ndarray-base-unary-reduce-strided1d-dispatch ``` Alternatively, - To load the package in a website via a `script` tag without installation and bundlers, use the [ES Module][es-module] available on the [`esm`][esm-url] branch (see [README][esm-readme]). - If you are using Deno, visit the [`deno`][deno-url] branch (see [README][deno-readme] for usage intructions). - For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [`umd`][umd-url] branch (see [README][umd-readme]). The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships. To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
## Usage ```javascript var UnaryStrided1dDispatch = require( '@stdlib/ndarray-base-unary-reduce-strided1d-dispatch' ); ``` #### UnaryStrided1dDispatch( table, idtypes, odtypes, policies ) Constructor for performing a reduction on an input ndarray. ```javascript var base = require( '@stdlib/stats-base-ndarray-max' ); var table = { 'default': base }; var dtypes = [ 'float64', 'float32', 'generic' ]; var policies = { 'output': 'same', 'casting': 'none' }; var unary = new UnaryStrided1dDispatch( table, [ dtypes ], dtypes, policies ); ``` The constructor has the following parameters: - **table**: strided reduction function dispatch table. Must have the following properties: - **default**: default strided reduction function which should be invoked when provided ndarrays have data types which do not have a corresponding specialized implementation. A dispatch table may have the following additional properties: - **types**: one-dimensional list of ndarray data types describing specialized input ndarray argument signatures. Only the input ndarray argument data types should be specified. Output ndarray and additional input ndarray argument data types should be omitted and are not considered during dispatch. The length of `types` must equal the number of strided functions specified by `fcns` (i.e., for every input ndarray data type, there must be a corresponding strided reduction function in `fcns`). - **fcns**: list of strided reduction functions which are specific to specialized input ndarray argument signatures. - **idtypes**: list containing lists of supported input data types for each input ndarray argument. - **odtypes**: list of supported output data types. - **policies**: dispatch policies. Must have the following properties: - **output**: output data type [policy][@stdlib/ndarray/output-dtype-policies]. - **casting**: input ndarray casting [policy][@stdlib/ndarray/input-casting-policies]. #### UnaryStrided1dDispatch.prototype.apply( x\[, ...args]\[, options] ) Performs a reduction on a provided input ndarray. ```javascript var ndarray = require( '@stdlib/ndarray-base-ctor' ); var base = require( '@stdlib/stats-base-ndarray-max' ); var table = { 'default': base }; var dtypes = [ 'float64', 'float32', 'generic' ]; var policies = { 'output': 'same', 'casting': 'none' }; var unary = new UnaryStrided1dDispatch( table, [ dtypes ], dtypes, policies ); var xbuf = [ -1.0, 2.0, -3.0 ]; var x = new ndarray( 'generic', xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' ); var y = unary.apply( x ); // returns var v = y.get(); // returns 2.0 ``` The method has the following parameters: - **x**: input ndarray. - **...args**: additional input ndarray arguments (_optional_). - **options**: function options (_optional_). The method accepts the following options: - **dims**: list of dimensions over which to perform a reduction. - **dtype**: output ndarray data type. Setting this option, overrides the output data type policy. - **keepdims**: boolean indicating whether the reduced dimensions should be included in the returned ndarray as singleton dimensions. Default: `false`. By default, the method returns an ndarray having a data type determined by the output data type policy. To override the default behavior, set the `dtype` option. ```javascript var ndarray = require( '@stdlib/ndarray-base-ctor' ); var base = require( '@stdlib/stats-base-ndarray-max' ); var getDType = require( '@stdlib/ndarray-dtype' ); var table = { 'default': base }; var dtypes = [ 'float64', 'float32', 'generic' ]; var policies = { 'output': 'same', 'casting': 'none' }; var unary = new UnaryStrided1dDispatch( table, [ dtypes ], dtypes, policies ); var xbuf = [ -1.0, 2.0, -3.0 ]; var x = new ndarray( 'generic', xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' ); var y = unary.apply( x, { 'dtype': 'float64' }); // returns var dt = getDType( y ); // returns 'float64' ``` #### UnaryStrided1dDispatch.prototype.assign( x\[, ...args], out\[, options] ) Performs a reduction on a provided input ndarray and assigns results to a provided output ndarray. ```javascript var base = require( '@stdlib/stats-base-ndarray-max' ); var dtypes = require( '@stdlib/ndarray-dtypes' ); var ndarray = require( '@stdlib/ndarray-base-ctor' ); var idt = dtypes( 'real_and_generic' ); var odt = idt; var policies = { 'output': 'same', 'casting': 'none' }; var table = { 'default': base }; var unary = new UnaryStrided1dDispatch( table, [ idt ], odt, policies ); var xbuf = [ -1.0, 2.0, -3.0 ]; var x = new ndarray( 'generic', xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' ); var ybuf = [ 0.0 ]; var y = new ndarray( 'generic', ybuf, [], [ 0 ], 0, 'row-major' ); var out = unary.assign( x, y ); // returns var v = out.get(); // returns 2.0 var bool = ( out === y ); // returns true ``` The method has the following parameters: - **x**: input ndarray. - **args**: additional input ndarray arguments (_optional_). - **out**: output ndarray. - **options**: function options (_optional_). The method accepts the following options: - **dims**: list of dimensions over which to perform a reduction.
## Notes - A strided reduction function should have the following signature: ```text f( arrays ) ``` where - **arrays**: array containing an input ndarray, followed by any additional ndarray arguments. - The output data type policy only applies to the `apply` method. For the `assign` method, the output ndarray is allowed to have any supported output data type.
## Examples ```javascript var dmax = require( '@stdlib/stats-base-ndarray-dmax' ); var smax = require( '@stdlib/stats-base-ndarray-smax' ); var base = require( '@stdlib/stats-base-ndarray-max' ); var uniform = require( '@stdlib/random-array-uniform' ); var dtypes = require( '@stdlib/ndarray-dtypes' ); var dtype = require( '@stdlib/ndarray-dtype' ); var ndarray2array = require( '@stdlib/ndarray-to-array' ); var ndarray = require( '@stdlib/ndarray-ctor' ); var UnaryStrided1dDispatch = require( '@stdlib/ndarray-base-unary-reduce-strided1d-dispatch' ); // Define the supported input and output data types: var idt = dtypes( 'real_and_generic' ); var odt = dtypes( 'real_and_generic' ); // Define dispatch policies: var policies = { 'output': 'same', 'casting': 'none' }; // Define a dispatch table: var table = { 'types': [ 'float64', // input 'float32' // input ], 'fcns': [ dmax, smax ], 'default': base }; // Create an interface for performing a reduction: var max = new UnaryStrided1dDispatch( table, [ idt ], odt, policies ); // Generate an array of random numbers: var xbuf = uniform( 100, -1.0, 1.0, { 'dtype': 'generic' }); // Wrap in an ndarray: var x = new ndarray( 'generic', xbuf, [ 10, 10 ], [ 10, 1 ], 0, 'row-major' ); // Perform a reduction: var y = max.apply( x, { 'dims': [ 0 ] }); // Resolve the output array data type: var dt = dtype( y ); console.log( dt ); // Print the results: console.log( ndarray2array( y ) ); ```
* * * ## Notice This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more. For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib]. #### Community [![Chat][chat-image]][chat-url] --- ## Copyright Copyright © 2016-2025. The Stdlib [Authors][stdlib-authors].

Owner

  • Name: stdlib
  • Login: stdlib-js
  • Kind: organization

Standard library for JavaScript.

Citation (CITATION.cff)

cff-version: 1.2.0
title: stdlib
message: >-
  If you use this software, please cite it using the
  metadata from this file.

type: software

authors:
  - name: The Stdlib Authors
    url: https://github.com/stdlib-js/stdlib/graphs/contributors

repository-code: https://github.com/stdlib-js/stdlib
url: https://stdlib.io

abstract: |
  Standard library for JavaScript and Node.js.

keywords:
  - JavaScript
  - Node.js
  - TypeScript
  - standard library
  - scientific computing
  - numerical computing
  - statistical computing

license: Apache-2.0 AND BSL-1.0

date-released: 2016

GitHub Events

Total
  • Member event: 1
  • Push event: 36
  • Create event: 5
Last Year
  • Member event: 1
  • Push event: 36
  • Create event: 5