Science Score: 44.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (7.4%) to scientific vocabulary

Scientific Fields

Mathematics Computer Science - 84% confidence
Artificial Intelligence and Machine Learning Computer Science - 60% confidence
Last synced: 4 months ago · JSON representation ·

Repository

Basic Info
  • Host: GitHub
  • Owner: huangyanh
  • License: agpl-3.0
  • Language: Python
  • Default Branch: main
  • Size: 10.6 MB
Statistics
  • Stars: 1
  • Watchers: 1
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Created 10 months ago · Last pushed 10 months ago
Metadata Files
Readme Contributing License Citation

README.md

CLI

YOLO may be used directly in the Command Line Interface (CLI) with a yolo command:

bash yolo predict model=yolo11n-seg.pt source='https://ultralytics.com/images/bus.jpg'

yolo can be used for a variety of tasks and modes and accepts additional arguments, i.e. imgsz=640. See the YOLO CLI Docs for examples.

Python

YOLO may also be used directly in a Python environment, and accepts the same arguments as in the CLI example above:

```python

Train the model

train_results = model.train( data="seg.yaml", # path to dataset YAML epochs=100, # number of training epochs imgsz=640, # training image size device="cpu", # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu )

Evaluate model performance on the validation set

metrics = model.val()

Perform object detection on an image

results = model("path/to/image.jpg") results[0].show()

Export the model to ONNX format

path = model.export(format="onnx") # return path to exported model ```

See YOLO Python Docs for more examples.

Dataset

Please contact 617719299@qq.com:

Owner

  • Name: HuangYanh
  • Login: huangyanh
  • Kind: user

Citation (CITATION.cff)

# This CITATION.cff file was generated with https://bit.ly/cffinit

cff-version: 1.2.0
title: Ultralytics YOLO
message: >-
  If you use this software, please cite it using the
  metadata from this file.
type: software
authors:
  - given-names: Glenn
    family-names: Jocher
    affiliation: Ultralytics
    orcid: 'https://orcid.org/0000-0001-5950-6979'
  - family-names: Qiu
    given-names: Jing
    affiliation: Ultralytics
    orcid: 'https://orcid.org/0000-0003-3783-7069'
  - given-names: Ayush
    family-names: Chaurasia
    affiliation: Ultralytics
    orcid: 'https://orcid.org/0000-0002-7603-6750'
repository-code: 'https://github.com/ultralytics/ultralytics'
url: 'https://ultralytics.com'
license: AGPL-3.0
version: 8.0.0
date-released: '2023-01-10'

GitHub Events

Total
  • Watch event: 1
  • Push event: 2
  • Create event: 7
Last Year
  • Watch event: 1
  • Push event: 2
  • Create event: 7

Dependencies

pyproject.toml pypi
  • matplotlib >=3.3.0
  • numpy >=1.23.0
  • opencv-python >=4.6.0
  • pandas >=1.1.4
  • pillow >=7.1.2
  • psutil *
  • py-cpuinfo *
  • pyyaml >=5.3.1
  • requests >=2.23.0
  • scipy >=1.4.1
  • seaborn >=0.11.0
  • torch >=1.8.0
  • torch >=1.8.0,!=2.4.0; sys_platform == 'win32'
  • torchvision >=0.9.0
  • tqdm >=4.64.0
  • ultralytics-thop >=2.0.0