sssegmentation

SSSegmentation: An Open Source Supervised Semantic Segmentation Toolbox Based on PyTorch.

https://github.com/segmentationblwx/sssegmentation

Science Score: 54.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org, ieee.org
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (8.5%) to scientific vocabulary

Keywords

deeplab deeplabv3 edgesam isnet mask2former maskformer mcibi mobilesam ocrnet pspnet samhq segfomer segment-anything segment-anything-2 semantic-segmentation twins

Scientific Fields

Mathematics Computer Science - 84% confidence
Last synced: 4 months ago · JSON representation ·

Repository

SSSegmentation: An Open Source Supervised Semantic Segmentation Toolbox Based on PyTorch.

Basic Info
Statistics
  • Stars: 861
  • Watchers: 9
  • Forks: 109
  • Open Issues: 6
  • Releases: 0
Topics
deeplab deeplabv3 edgesam isnet mask2former maskformer mcibi mobilesam ocrnet pspnet samhq segfomer segment-anything segment-anything-2 semantic-segmentation twins
Created about 5 years ago · Last pushed 4 months ago
Metadata Files
Readme Funding License Citation

README.md


Docs PyPI - Python Version PyPI License PyPI - Downloads PyPI - Downloads Release - Downloads Issue Resolution Open Issues GitHub Last Commit (Main)

Documents: https://sssegmentation.readthedocs.io/en/latest/

What's New

Introduction

SSSegmentation is an open source supervised semantic segmentation toolbox based on PyTorch. You can star this repository to keep track of the project if it's helpful for you, thank you for your support.

Major Features

  • High Performance

The performance of re-implemented segmentation algorithms is better than or comparable to other codebases.

  • Modular Design and Unified Benchmark

Various segmentation methods are unified into several specific modules. Benefiting from this design, SSSegmentation can integrate a great deal of popular and contemporary semantic segmentation frameworks and then, train and test them on unified benchmarks.

  • Fewer Dependencies

SSSegmenation tries its best to avoid introducing more dependencies when reproducing novel semantic segmentation approaches.

Benchmark and Model Zoo

Supported Backbones

| Backbone | Model Zoo | Paper Link | Code Snippet | | :-: | :-: | :-: | :-: | | ConvNeXtV2 | Click | CVPR 2023 | Click | | MobileViTV2 | Click | ArXiv 2022 | Click | | ConvNeXt | Click | CVPR 2022 | Click | | MAE | Click | CVPR 2022 | Click | | MobileViT | Click | ICLR 2022 | Click | | BEiT | Click | ICLR 2022 | Click | | Twins | Click | NeurIPS 2021 | Click | | SwinTransformer | Click | ICCV 2021 | Click | | VisionTransformer | Click | IClR 2021 | Click | | BiSeNetV2 | Click | IJCV 2021 | Click | | ResNeSt | Click | ArXiv 2020 | Click | | CGNet | Click | TIP 2020 | Click | | HRNet | Click | CVPR 2019 | Click | | MobileNetV3 | Click | ICCV 2019 | Click | | FastSCNN | Click | ArXiv 2019 | Click | | BiSeNetV1 | Click | ECCV 2018 | Click | | MobileNetV2 | Click | CVPR 2018 | Click | | ERFNet | Click | T-ITS 2017 | Click | | ResNet | Click | CVPR 2016 | Click | | UNet | Click | MICCAI 2015 | Click |

Supported Segmentors

| Segmentor | Model Zoo | Paper Link | Code Snippet | | :-: | :-: | :-: | :-: | | SAMV2 | Click | ArXiv 2024 | Click | | EdgeSAM | Click | ArXiv 2023 | Click | | IDRNet | Click | NeurIPS 2023 | Click | | MobileSAM | Click | ArXiv 2023 | Click | | SAMHQ | Click | NeurIPS 2023 | Click | | SAM | Click | ArXiv 2023 | Click | | MCIBI++ | Click | TPAMI 2022 | Click | | Mask2Former | Click | CVPR 2022 | Click | | ISNet | Click | ICCV 2021 | Click | | MCIBI | Click | ICCV 2021 | Click | | MaskFormer | Click | NeurIPS 2021 | Click | | Segformer | Click | NeurIPS 2021 | Click | | SETR | Click | CVPR 2021 | Click | | ISANet | Click | IJCV 2021 | Click | | DNLNet | Click | ECCV 2020 | Click | | PointRend | Click | CVPR 2020 | Click | | OCRNet | Click | ECCV 2020 | Click | | GCNet | Click | TPAMI 2020 | Click | | APCNet | Click | CVPR 2019 | Click | | DMNet | Click | ICCV 2019 | Click | | ANNNet | Click | ICCV 2019 | Click | | EMANet | Click | ICCV 2019 | Click | | FastFCN | Click | ArXiv 2019 | Click | | SemanticFPN | Click | CVPR 2019 | Click | | CCNet | Click | ICCV 2019 | Click | | CE2P | Click | AAAI 2019 | Click | | DANet | Click | CVPR 2019 | Click | | PSANet | Click | ECCV 2018 | Click | | UPerNet | Click | ECCV 2018 | Click | | EncNet | Click | CVPR 2018 | Click | | Deeplabv3Plus | Click | ECCV 2018 | Click | | NonLocalNet | Click | CVPR 2018 | Click | | ICNet | Click | ECCV 2018 | Click | | Mixed Precision (FP16) Training | Click | ArXiv 2017 | Click | | Deeplabv3 | Click | ArXiv 2017 | Click | | PSPNet | Click | CVPR 2017 | Click | | FCN | Click | TPAMI 2017 | Click |

Supported Datasets

| Dataset | Project Link | Paper Link | Code Snippet | Download Script | | :-: | :-: | :-: | :-: | :-: | | VSPW | Click | CVPR 2021 | Click |

CMD bash scripts/prepare_datasets.sh vspw
| | Supervisely | Click | Website Release 2020 | Click |
CMD bash scripts/prepare_datasets.sh supervisely
| | Dark Zurich | Click | ICCV 2019 | Click |
CMD bash scripts/prepare_datasets.sh darkzurich
| | Nighttime Driving | Click | ITSC 2018 | Click |
CMD bash scripts/prepare_datasets.sh nighttimedriving
| | CIHP | Click | ECCV 2018 | Click |
CMD bash scripts/prepare_datasets.sh cihp
| | COCOStuff10k | Click | CVPR 2018 | Click |
CMD bash scripts/prepare_datasets.sh cocostuff10k
| | COCOStuff164k | Click | CVPR 2018 | Click |
CMD bash scripts/prepare_datasets.sh coco
| | MHPv1&v2 | Click | ArXiv 2017 | Click |
CMD bash scripts/prepare_datasets.sh mhpv1 & bash scripts/prepare_datasets.sh mhpv2
| | LIP | Click | CVPR 2017 | Click |
CMD bash scripts/prepare_datasets.sh lip
| | ADE20k | Click | CVPR 2017 | Click |
CMD bash scripts/prepare_datasets.sh ade20k
| | SBUShadow | Click | ECCV 2016 | Click |
CMD bash scripts/prepare_datasets.sh sbushadow
| | CityScapes | Click | CVPR 2016 | Click |
CMD bash scripts/prepare_datasets.sh cityscapes
| | ATR | Click | ICCV 2015 | Click |
CMD bash scripts/prepare_datasets.sh atr
| | Pascal Context | Click | CVPR 2014 | Click |
CMD bash scripts/prepare_datasets.sh pascalcontext
| | MS COCO | Click | ECCV 2014 | Click |
CMD bash scripts/prepare_datasets.sh coco
| | HRF | Click | Int J Biomed Sci 2013 | Click |
CMD bash scripts/prepare_datasets.sh hrf
| | CHASE DB1 | Click | TBME 2012 | Click |
CMD bash scripts/prepare_datasets.sh chase_db1
| | PASCAL VOC | Click | IJCV 2010 | Click |
CMD bash scripts/prepare_datasets.sh pascalvoc
| | DRIVE | Click | TMI 2004 | Click |
CMD bash scripts/prepare_datasets.sh drive
| | STARE | Click | TMI 2000 | Click |
CMD bash scripts/prepare_datasets.sh stare
|

Citation

If you use SSSegmentation in your research, please consider citing this project,

``` @article{jin2023sssegmenation, title={SSSegmenation: An Open Source Supervised Semantic Segmentation Toolbox Based on PyTorch}, author={Jin, Zhenchao}, journal={arXiv preprint arXiv:2305.17091}, year={2023} }

@inproceedings{jin2021isnet, title={ISNet: Integrate Image-Level and Semantic-Level Context for Semantic Segmentation}, author={Jin, Zhenchao and Liu, Bin and Chu, Qi and Yu, Nenghai}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={7189--7198}, year={2021} }

@inproceedings{jin2021mining, title={Mining Contextual Information Beyond Image for Semantic Segmentation}, author={Jin, Zhenchao and Gong, Tao and Yu, Dongdong and Chu, Qi and Wang, Jian and Wang, Changhu and Shao, Jie}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={7231--7241}, year={2021} }

@article{jin2022mcibi++, title={MCIBI++: Soft Mining Contextual Information Beyond Image for Semantic Segmentation}, author={Jin, Zhenchao and Yu, Dongdong and Yuan, Zehuan and Yu, Lequan}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, year={2022}, publisher={IEEE} }

@inproceedings{jin2023idrnet, title={IDRNet: Intervention-Driven Relation Network for Semantic Segmentation}, author={Jin, Zhenchao and Hu, Xiaowei and Zhu, Lingting and Song, Luchuan and Yuan, Li and Yu, Lequan}, booktitle={Thirty-Seventh Conference on Neural Information Processing Systems}, year={2023} } ```

References

We are very grateful to the following projects for their help in building SSSegmentation,

Owner

  • Name: SegmentationBLWX
  • Login: SegmentationBLWX
  • Kind: organization
  • Email: blwx@mail.ustc.edu.cn
  • Location: China

Focus on semantic segmentation.

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use SSSegmentation in your research, please consider citing this project."
authors:
  - name: "Zhenchao Jin"
title: "SSSegmentation: An Open Source Supervised Semantic Segmentation Toolbox Based on PyTorch"
date-released: 2020-10-23
url: "https://github.com/SegmentationBLWX/sssegmentation"
license: Apache-2.0

GitHub Events

Total
  • Issues event: 8
  • Watch event: 77
  • Issue comment event: 10
  • Push event: 147
  • Pull request event: 52
  • Fork event: 4
  • Create event: 1
Last Year
  • Issues event: 8
  • Watch event: 77
  • Issue comment event: 10
  • Push event: 147
  • Pull request event: 52
  • Fork event: 4
  • Create event: 1

Committers

Last synced: 10 months ago

All Time
  • Total Commits: 820
  • Total Committers: 1
  • Avg Commits per committer: 820.0
  • Development Distribution Score (DDS): 0.0
Past Year
  • Commits: 124
  • Committers: 1
  • Avg Commits per committer: 124.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
CharlesPikachu 1****1@q****m 820
Committer Domains (Top 20 + Academic)
qq.com: 1

Issues and Pull Requests

Last synced: 8 months ago

All Time
  • Total issues: 64
  • Total pull requests: 2
  • Average time to close issues: about 2 months
  • Average time to close pull requests: 14 days
  • Total issue authors: 38
  • Total pull request authors: 2
  • Average comments per issue: 2.47
  • Average comments per pull request: 0.0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 14
  • Pull requests: 2
  • Average time to close issues: 15 days
  • Average time to close pull requests: 14 days
  • Issue authors: 6
  • Pull request authors: 2
  • Average comments per issue: 1.64
  • Average comments per pull request: 0.0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • STHxiao (11)
  • umarjibrilmohd (5)
  • qdd1234 (4)
  • TiankaiHang (3)
  • NJNUCS (3)
  • Junjun2016 (2)
  • dalexin (2)
  • shituo123456 (2)
  • 123AOQW (2)
  • swjtulinxi (2)
  • zhushk21 (1)
  • shravankumar-concat (1)
  • TonFard (1)
  • cspearl (1)
  • SAWRJJ (1)
Pull Request Authors
  • CharlesPikachu (28)
  • ItsaFugazi (2)
  • sieu-n (2)
Top Labels
Issue Labels
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 626 last-month
  • Total dependent packages: 0
  • Total dependent repositories: 1
  • Total versions: 16
  • Total maintainers: 1
pypi.org: sssegmentation

SSSegmentation: An Open Source Supervised Semantic Segmentation Toolbox Based on PyTorch

  • Versions: 16
  • Dependent Packages: 0
  • Dependent Repositories: 1
  • Downloads: 626 Last month
Rankings
Stargazers count: 2.5%
Forks count: 4.7%
Dependent packages count: 7.3%
Average: 13.1%
Dependent repos count: 22.1%
Downloads: 28.7%
Maintainers (1)
Last synced: 4 months ago

Dependencies

docs/requirements.txt pypi
  • recommonmark *
  • sphinx ==4.5.0
  • sphinx_markdown_tables ==0.0.12
  • sphinx_rtd_theme *
requirements/evaluate.txt pypi
  • chainercv *
  • cityscapesscripts *
requirements/io.txt pypi
  • opencv-python *
  • pandas *
  • pillow *
requirements/nn.txt pypi
  • mmcv-full *
  • timm *
  • torch *
  • torchvision *
requirements/science.txt pypi
  • numpy *
  • scipy *
requirements/terminal.txt pypi
  • argparse *
  • tqdm *
requirements.txt pypi
setup.py pypi
requirements/augmentation.txt pypi
  • albumentations *
requirements/misc.txt pypi
  • cython *
  • fvcore *