ndarray-base-unary-accumulate

Perform a reduction over elements in a input ndarray.

https://github.com/stdlib-js/ndarray-base-unary-accumulate

Science Score: 44.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (14.5%) to scientific vocabulary

Keywords

accumulate accumulation array base javascript ndarray node node-js nodejs reduce reduction stdlib strided unary
Last synced: 6 months ago · JSON representation ·

Repository

Perform a reduction over elements in a input ndarray.

Basic Info
Statistics
  • Stars: 2
  • Watchers: 2
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Topics
accumulate accumulation array base javascript ndarray node node-js nodejs reduce reduction stdlib strided unary
Created about 1 year ago · Last pushed 9 months ago
Metadata Files
Readme Changelog Contributing License Code of conduct Citation Security

README.md

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

accumulateUnary

NPM version Build Status Coverage Status <!-- dependencies -->

Perform a reduction over elements in an input ndarray.

## Installation ```bash npm install @stdlib/ndarray-base-unary-accumulate ``` Alternatively, - To load the package in a website via a `script` tag without installation and bundlers, use the [ES Module][es-module] available on the [`esm`][esm-url] branch (see [README][esm-readme]). - If you are using Deno, visit the [`deno`][deno-url] branch (see [README][deno-readme] for usage intructions). - For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [`umd`][umd-url] branch (see [README][umd-readme]). The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships. To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
## Usage ```javascript var accumulateUnary = require( '@stdlib/ndarray-base-unary-accumulate' ); ``` #### accumulateUnary( arrays, initial, clbk ) Performs a reduction over elements in an input ndarray. ```javascript var Float64Array = require( '@stdlib/array-float64' ); function add( acc, x ) { return acc + x; } // Create a data buffer: var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] ); // Define the shape of the input array: var shape = [ 3, 1, 2 ]; // Define the array strides: var sx = [ 4, 4, 1 ]; // Define the index offset: var ox = 1; // Create the input ndarray-like object: var x = { 'dtype': 'float64', 'data': xbuf, 'shape': shape, 'strides': sx, 'offset': ox, 'order': 'row-major' }; // Compute the sum: var v = accumulateUnary( [ x ], 0.0, add ); // returns 39.0 ``` The function accepts the following arguments: - **arrays**: array-like object containing one input ndarray. - **initial**: initial value. - **clbk**: callback function to apply. Each provided ndarray should be an object with the following properties: - **dtype**: data type. - **data**: data buffer. - **shape**: dimensions. - **strides**: stride lengths. - **offset**: index offset. - **order**: specifies whether an ndarray is row-major (C-style) or column major (Fortran-style). The callback is invoked with two arguments: - **acc**: the current accumulated value. The first time the callback is invoked, `acc` is equal to the initial value. - **value**: the current element. After each callback invocation, the callback return value is subsequently used as the accumulated value for the next callback invocation.
## Notes - For very high-dimensional ndarrays which are non-contiguous, one should consider copying the underlying data to contiguous memory before applying an accumulator in order to achieve better performance.
## Examples ```javascript var discreteUniform = require( '@stdlib/random-array-discrete-uniform' ); var ndarray2array = require( '@stdlib/ndarray-base-to-array' ); var add = require( '@stdlib/number-float64-base-add' ); var accumulateUnary = require( '@stdlib/ndarray-base-unary-accumulate' ); var N = 10; var x = { 'dtype': 'generic', 'data': discreteUniform( N, -100, 100, { 'dtype': 'generic' }), 'shape': [ 5, 2 ], 'strides': [ 2, 1 ], 'offset': 0, 'order': 'row-major' }; var sum = accumulateUnary( [ x ], 0.0, add ); console.log( ndarray2array( x.data, x.shape, x.strides, x.offset, x.order ) ); console.log( 'sum: %d', sum ); ```

## C APIs
Character codes for data types: - **x**: `bool` (boolean). - **c**: `complex64` (single-precision floating-point complex number). - **z**: `complex128` (double-precision floating-point complex number). - **f**: `float32` (single-precision floating-point number). - **d**: `float64` (double-precision floating-point number). - **k**: `int16` (signed 16-bit integer). - **i**: `int32` (signed 32-bit integer). - **s**: `int8` (signed 8-bit integer). - **t**: `uint16` (unsigned 16-bit integer). - **u**: `uint32` (unsigned 32-bit integer). - **b**: `uint8` (unsigned 8-bit integer). Function name suffix naming convention: ```text stdlib_ndarray__[_as__] ``` For example, ```c void stdlib_ndarray_accumulate_dd_d(...) {...} ``` is a function which performs accumulation in double-precision and accepts one double-precision floating-point input ndarray and one double-precision floating-point output ndarray. In other words, the suffix encodes the function type signature. To support callbacks whose input arguments and/or return values are of a different data type than the input and/or output ndarray data types, the naming convention supports appending an `as` suffix. For example, ```c void stdlib_ndarray_accumulate_ff_f_as_dd_d(...) {...} ``` is a function which performs accumulation in single-precision and accepts one single-precision floating-point input ndarray and one single-precision floating-point output ndarray. However, the callback accepts and returns double-precision floating-point numbers. Accordingly, the input and output values need to be cast using the following conversion sequence ```c // Convert the current accumulated value to double-precision: double curr = (double)acc; // Convert each input array element to double-precision: double in1 = (double)x[ i ]; // Evaluate the callback: double out = f( curr, in1 ); // Convert the callback return value to single-precision: acc = (float)out; ``` The accumulation data type and the output ndarray data type should **always** be the same. The callback is invoked with two arguments: - **acc**: the current accumulated value. The first time the callback is invoked, this argument is equal to the initial value. - **value**: the current element. After each callback invocation, the callback return value is subsequently used as the accumulated value for the next callback invocation.
### Usage ```c #include "stdlib/ndarray/base/unary_accumulate.h" ```
* * * ### Notes - The initial value and output ndarrays are assumed to be zero-dimensional ndarrays.

### Examples ```c #include "stdlib/ndarray/base/unary_accumulate.h" #include "stdlib/ndarray/dtypes.h" #include "stdlib/ndarray/index_modes.h" #include "stdlib/ndarray/orders.h" #include "stdlib/ndarray/ctor.h" #include #include #include #include static void print_ndarray_contents( const struct ndarray *x ) { int64_t i; int8_t s; double v; for ( i = 0; i < stdlib_ndarray_length( x ); i++ ) { s = stdlib_ndarray_iget_float64( x, i, &v ); if ( s != 0 ) { fprintf( stderr, "Unable to resolve data element.\n" ); exit( EXIT_FAILURE ); } fprintf( stdout, "data[%"PRId64"] = %lf\n", i, v ); } } static double add( const double acc, const double x ) { return acc + x; } int main( void ) { // Define the ndarray data type: enum STDLIB_NDARRAY_DTYPE dtype = STDLIB_NDARRAY_FLOAT64; // Create underlying byte arrays: double xvalues[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 }; double ivalues[] = { 0.0 }; double ovalues[] = { 0.0 }; uint8_t *xbuf = (uint8_t *)xvalues; uint8_t *ibuf = (uint8_t *)ivalues; uint8_t *obuf = (uint8_t *)ovalues; // Define the number of dimensions: int64_t ndims = 3; // Define the array shapes: int64_t xsh[] = { 2, 2, 2 }; int64_t ish[] = {}; int64_t osh[] = {}; // Define the strides: int64_t sx[] = { 32, 16, 8 }; int64_t si[] = { 0 }; int64_t so[] = { 0 }; // Define the offsets: int64_t ox = 0; int64_t oi = 0; int64_t oo = 0; // Define the array order: enum STDLIB_NDARRAY_ORDER order = STDLIB_NDARRAY_ROW_MAJOR; // Specify the index mode: enum STDLIB_NDARRAY_INDEX_MODE imode = STDLIB_NDARRAY_INDEX_ERROR; // Specify the subscript index modes: int8_t submodes[] = { imode }; int64_t nsubmodes = 1; // Create an input ndarray: struct ndarray *x = stdlib_ndarray_allocate( dtype, xbuf, ndims, xsh, sx, ox, order, imode, nsubmodes, submodes ); if ( x == NULL ) { fprintf( stderr, "Error allocating memory.\n" ); exit( EXIT_FAILURE ); } // Create an initial value zero-dimensional ndarray: struct ndarray *initial = stdlib_ndarray_allocate( dtype, ibuf, ndims, ish, si, oi, order, imode, nsubmodes, submodes ); if ( initial == NULL ) { fprintf( stderr, "Error allocating memory.\n" ); exit( EXIT_FAILURE ); } // Create an output zero-dimensional ndarray: struct ndarray *out = stdlib_ndarray_allocate( dtype, obuf, ndims, osh, so, oo, order, imode, nsubmodes, submodes ); if ( out == NULL ) { fprintf( stderr, "Error allocating memory.\n" ); exit( EXIT_FAILURE ); } // Define an array containing the ndarrays: struct ndarray *arrays[] = { x, initial, out }; // Apply the callback: int8_t status = stdlib_ndarray_accumulate_dd_d( arrays, (void *)add ); if ( status != 0 ) { fprintf( stderr, "Error during computation.\n" ); exit( EXIT_FAILURE ); } // Print the results: print_ndarray_contents( out ); fprintf( stdout, "\n" ); // Free allocated memory: stdlib_ndarray_free( x ); stdlib_ndarray_free( initial ); stdlib_ndarray_free( out ); } ```

* * * ## Notice This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more. For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib]. #### Community [![Chat][chat-image]][chat-url] --- ## License See [LICENSE][stdlib-license]. ## Copyright Copyright © 2016-2025. The Stdlib [Authors][stdlib-authors].

Owner

  • Name: stdlib
  • Login: stdlib-js
  • Kind: organization

Standard library for JavaScript.

Citation (CITATION.cff)

cff-version: 1.2.0
title: stdlib
message: >-
  If you use this software, please cite it using the
  metadata from this file.

type: software

authors:
  - name: The Stdlib Authors
    url: https://github.com/stdlib-js/stdlib/graphs/contributors

repository-code: https://github.com/stdlib-js/stdlib
url: https://stdlib.io

abstract: |
  Standard library for JavaScript and Node.js.

keywords:
  - JavaScript
  - Node.js
  - TypeScript
  - standard library
  - scientific computing
  - numerical computing
  - statistical computing

license: Apache-2.0 AND BSL-1.0

date-released: 2016

GitHub Events

Total
  • Watch event: 1
  • Push event: 22
  • Create event: 5
Last Year
  • Watch event: 1
  • Push event: 22
  • Create event: 5

Committers

Last synced: 7 months ago

All Time
  • Total Commits: 7
  • Total Committers: 1
  • Avg Commits per committer: 7.0
  • Development Distribution Score (DDS): 0.0
Past Year
  • Commits: 7
  • Committers: 1
  • Avg Commits per committer: 7.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
stdlib-bot n****y@s****o 7
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 7 months ago

All Time
  • Total issues: 0
  • Total pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Total issue authors: 0
  • Total pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels

Dependencies

.github/workflows/benchmark.yml actions
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
.github/workflows/cancel.yml actions
  • styfle/cancel-workflow-action 85880fa0301c86cca9da44039ee3bb12d3bedbfa composite
.github/workflows/close_pull_requests.yml actions
  • superbrothers/close-pull-request 9c18513d320d7b2c7185fb93396d0c664d5d8448 composite
.github/workflows/examples.yml actions
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
.github/workflows/npm_downloads.yml actions
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
  • actions/upload-artifact 5d5d22a31266ced268874388b861e4b58bb5c2f3 composite
  • distributhor/workflow-webhook 48a40b380ce4593b6a6676528cd005986ae56629 composite
.github/workflows/productionize.yml actions
  • 8398a7/action-slack 28ba43ae48961b90635b50953d216767a6bea486 composite
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
  • stdlib-js/bundle-action main composite
  • stdlib-js/transform-errors-action main composite
.github/workflows/publish.yml actions
  • 8398a7/action-slack 28ba43ae48961b90635b50953d216767a6bea486 composite
  • JS-DevTools/npm-publish 19c28f1ef146469e409470805ea4279d47c3d35c composite
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
  • styfle/cancel-workflow-action 85880fa0301c86cca9da44039ee3bb12d3bedbfa composite
.github/workflows/test.yml actions
  • 8398a7/action-slack 28ba43ae48961b90635b50953d216767a6bea486 composite
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
.github/workflows/test_bundles.yml actions
  • 8398a7/action-slack 28ba43ae48961b90635b50953d216767a6bea486 composite
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
  • denoland/setup-deno 041b854f97b325bd60e53e9dc2de9cb9f9ac0cba composite
.github/workflows/test_coverage.yml actions
  • 8398a7/action-slack 28ba43ae48961b90635b50953d216767a6bea486 composite
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
  • codecov/codecov-action 84508663e988701840491b86de86b666e8a86bed composite
  • distributhor/workflow-webhook 48a40b380ce4593b6a6676528cd005986ae56629 composite
.github/workflows/test_install.yml actions
  • 8398a7/action-slack 28ba43ae48961b90635b50953d216767a6bea486 composite
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
.github/workflows/test_published_package.yml actions
  • 8398a7/action-slack 28ba43ae48961b90635b50953d216767a6bea486 composite
  • actions/checkout 8ade135a41bc03ea155e62e844d188df1ea18608 composite
  • actions/setup-node b39b52d1213e96004bfcb1c61a8a6fa8ab84f3e8 composite
package.json npm
  • @stdlib/array-typed-complex-ctors ^0.2.2 development
  • @stdlib/assert-is-complex64 ^0.2.2 development
  • @stdlib/bench-harness ^0.2.2 development
  • @stdlib/complex-float32-base-add ^0.1.0 development
  • @stdlib/math-base-assert-is-nan ^0.2.2 development
  • @stdlib/math-base-ops-add ^0.2.2 development
  • @stdlib/math-base-special-floor ^0.2.3 development
  • @stdlib/math-base-special-pow ^0.3.0 development
  • @stdlib/math-base-special-sqrt ^0.2.2 development
  • @stdlib/ndarray-base-shape2strides ^0.2.2 development
  • @stdlib/ndarray-base-to-array ^0.2.1 development
  • @stdlib/random-array-discrete-uniform ^0.2.1 development
  • @stdlib/random-array-uniform ^0.2.1 development
  • istanbul ^0.4.1 development
  • tap-min git+https://github.com/Planeshifter/tap-min.git development
  • tape git+https://github.com/kgryte/tape.git#fix/globby development
  • @stdlib/complex-float32-ctor ^0.0.2
  • @stdlib/complex-float64-ctor ^0.0.3
  • @stdlib/ndarray-base-bytes-per-element ^0.2.2
  • @stdlib/ndarray-base-iteration-order ^0.2.2
  • @stdlib/ndarray-base-minmax-view-buffer-index ^0.2.2
  • @stdlib/ndarray-base-ndarraylike2object ^0.2.2
  • @stdlib/ndarray-base-nullary-loop-interchange-order ^0.2.2
  • @stdlib/ndarray-base-nullary-tiling-block-size ^0.2.2
  • @stdlib/ndarray-base-numel ^0.2.2
  • @stdlib/ndarray-base-vind2bind ^0.2.2
  • @stdlib/ndarray-ctor ^0.2.2
  • @stdlib/ndarray-index-modes ^0.2.2
  • @stdlib/ndarray-orders ^0.2.2
  • @stdlib/types ^0.4.3
  • @stdlib/utils-library-manifest ^0.2.2