Science Score: 44.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (7.2%) to scientific vocabulary
Scientific Fields
Repository
Clinical Learning for Early Recognition
Statistics
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
- Releases: 0
Metadata Files
README.md
Enhancing Multimodal Clinical Pretraining for ICU Modality Prediction
This repository contains a PyTorch implementation of a multimodal clinical pretraining model for ICU modality prediction. Our model achieves state-of-the-art performance on the downstream task of ICU modality prediction by leveraging a pre-trained model and fine-tuning it with a novel neural network structure and loss function.
Pretraining Multimodal Mimic
Fine-tuning Multimodal Mimic for the Downstream Task
Training Customized LLM
For training the customized LLM model. Please use tmux
``` tmux new -s sessionname tmux ls tmux a -t sessionname time python experiments/measurementnotes/measurementnotesllm.py > trainlog.txt 2>&1 Control+B D
tail -f train_log.txt ```
Training Traditional Models
For training the traditional ML model, please use Makefile.
Developer
The entire project structure should be like below:
- Download pre-trained model from aisuko/in-hospital-motality-6-48-contrast-learning and put it into
exp_outputs/multimodal-mimic-3-pretraining-epoch-200 - Download
in-hospital-motality-6-48.tar.gzdataset from above project and put them into the root path - Download
raw-mimic3.tar.gzraw data put the folder into the root path - Download
valset.tar.gzand put it intomultimodal_clinical_pretraining/resources/
``` ubuntu@ip:~/workspace/multimodal-mimic3-pretraining-epoch200$ tree -L 2 . ├── CITATION.cff ├── Makefile ├── README.md ├── READMEMODELARCH.md ├── READMlog.md ├── cost-time.md ├── documents │ └── dataset.md ├── exp │ └── in-hospital-mortality ├── expoutputs │ └── multimodal-mimic-3-pretraining-epoch-200 ├── experiments │ └── measurementnotes ├── imgs │ ├── W&B Chart 332025, 112437 am.png │ ├── W&B Chart 332025, 112750 am.png │ ├── W&B Chart 332025, 112812 am.png │ ├── W&B Chart 732025, 103454 am.png │ ├── W&B Chart 732025, 103512 am.png │ ├── W&B Chart 732025, 103533 am.png │ ├── W&B Chart 732025, 103544 am.png │ ├── W&B Chart 732025, 105050 am.png │ ├── W&B Chart 732025, 105357 am.png │ ├── W&B Chart 732025, 105850 am.png │ ├── W&B Chart 732025, 105857 am.png │ ├── W&B Chart 732025, 105902 am.png │ ├── resultofevaluationds.png │ └── trainingtime.png ├── in-hospital-mortality-12 │ ├── test │ ├── testlistfile.csv │ ├── train │ ├── trainlistfile.csv │ └── vallistfile.csv ├── in-hospital-mortality-18 │ ├── test │ ├── testlistfile.csv │ ├── train │ ├── trainlistfile.csv │ └── vallistfile.csv ├── in-hospital-mortality-24 │ ├── test │ ├── testlistfile.csv │ ├── train │ ├── trainlistfile.csv │ └── vallistfile.csv ├── in-hospital-mortality-30 │ ├── 1percenttestlistfile.csv │ ├── 1percenttrainlistfile.csv │ ├── 1percentvallistfile.csv │ ├── test │ └── train ├── in-hospital-mortality-36 │ ├── 1percenttestlistfile.csv │ ├── 1percenttrainlistfile.csv │ ├── 1percentvallistfile.csv │ ├── test │ └── train ├── in-hospital-mortality-42 │ ├── 1percenttestlistfile.csv │ ├── 1percenttrainlistfile.csv │ ├── 1percentvallistfile.csv │ ├── test │ └── train ├── in-hospital-mortality-48 │ ├── test │ ├── testlistfile.csv │ ├── train │ ├── trainlistfile.csv │ └── vallistfile.csv ├── in-hospital-mortality-6 │ ├── test │ ├── testlistfile.csv │ ├── train │ ├── trainlistfile.csv │ └── vallistfile.csv ├── in-hospital-mortality-6-48.tar.gz ├── logs │ ├── 12hlog5dec.txt │ ├── trainlog36600.txt │ └── trainlogs4824nov.txt ├── mimic3-benchmarks │ ├── createdecompensation.py │ ├── createinhospitalmortality.py │ ├── createlengthofstay.py │ ├── createmultitask.py │ ├── createphenotyping.py │ ├── extractepisodesfromsubjects.py │ ├── in-hospital-mortality │ ├── in-hospital-mortality-downstream │ └── root ├── multimodalclinicalpretraining │ ├── init.py │ ├── pycache │ ├── data │ ├── distributedutils.py │ ├── loss.py │ ├── models │ ├── optim │ ├── pretrain │ ├── resources │ ├── scheduler │ └── utils.py ├── raw-mimic3 │ ├── ICUSTAYS.csv │ └── NOTEEVENTS.csv ├── scripts │ └── calculateexecutiontime.sh ├── testnotesdataset.pkl ├── trainnotesdataset.pkl ├── valnotesdataset.pkl └── wandb ├── debug-internal.log -> run-20250304100151-bqulgoqf/logs/debug-internal.log ├── debug.log -> run-20250304100151-bqulgoqf/logs/debug.log ├── latest-run -> run-20250304100151-bqulgoqf ├── run-20250302051114-nnfq92sr ├── run-20250302231213-6odzmeub ├── run-20250302231826-g8u7nzsm ├── run-20250304025141-5o65hj3j ├── run-20250304045655-v46aka9n ├── run-20250304061911-c5pnhukq ├── run-20250304062932-t2zgvzww ├── run-20250304064307-m5ss0f6h ├── run-20250304064926-em2k41io ├── run-20250304070123-fcbuonjr ├── run-20250304070611-stzzyoax ├── run-20250304071730-t5s3jpn9 ├── run-20250304072430-6jpgoob4 ├── run-20250304073736-32tqbycx ├── run-20250304074443-13w4jjnl ├── run-20250304075835-o3mnqra5 ├── run-20250304084711-z0on6zav └── run-20250304100151-bqulgoqf
69 directories, 117 files ```
Citation
bibtex
@software{Li_Clinical_Learning_for_2024,
author = {Li, Bowen},
doi = {<>},
month = dec,
title = {{Clinical Learning for Early Recognition}},
url = {https://github.com/Aisuko/clear},
version = {1.0.0},
year = {2024}
}
Acknowledgements
Thanks for your contribution.
Owner
- Name: Bowen
- Login: Aisuko
- Kind: user
- Location: Global
- Company: RMIT
- Twitter: AisukoLi
- Repositories: 70
- Profile: https://github.com/Aisuko
Member of the GNU Hurd | previously @rancher | Founder of @SkywardAI | PhD candidate at RMIT
Citation (CITATION.cff)
cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Li"
given-names: "Bowen"
orcid: "https://orcid.org/0009-0007-6470-5607"
title: "Clinical Learning for Early Recognition"
version: 1.0.0
doi: <>
date-released: 2024-12-08
url: "https://github.com/Aisuko/clear"
GitHub Events
Total
- Watch event: 1
- Public event: 1
- Push event: 5
- Create event: 6
Last Year
- Watch event: 1
- Public event: 1
- Push event: 5
- Create event: 6
Issues and Pull Requests
Last synced: 7 months ago
All Time
- Total issues: 0
- Total pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Total issue authors: 0
- Total pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0