clear

Clinical Learning for Early Recognition

https://github.com/aisuko/clear

Science Score: 44.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (7.2%) to scientific vocabulary

Scientific Fields

Artificial Intelligence and Machine Learning Computer Science - 80% confidence
Last synced: 4 months ago · JSON representation ·

Repository

Clinical Learning for Early Recognition

Basic Info
  • Host: GitHub
  • Owner: Aisuko
  • Language: Python
  • Default Branch: main
  • Homepage:
  • Size: 4.02 MB
Statistics
  • Stars: 0
  • Watchers: 1
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Created 10 months ago · Last pushed 9 months ago
Metadata Files
Readme Citation

README.md

Enhancing Multimodal Clinical Pretraining for ICU Modality Prediction

This repository contains a PyTorch implementation of a multimodal clinical pretraining model for ICU modality prediction. Our model achieves state-of-the-art performance on the downstream task of ICU modality prediction by leveraging a pre-trained model and fine-tuning it with a novel neural network structure and loss function.

Pretraining Multimodal Mimic

Fine-tuning Multimodal Mimic for the Downstream Task

Training Customized LLM

For training the customized LLM model. Please use tmux

``` tmux new -s sessionname tmux ls tmux a -t sessionname time python experiments/measurementnotes/measurementnotesllm.py > trainlog.txt 2>&1 Control+B D

tail -f train_log.txt ```

Training Traditional Models

For training the traditional ML model, please use Makefile.

Developer

The entire project structure should be like below:

  • Download pre-trained model from aisuko/in-hospital-motality-6-48-contrast-learning and put it into exp_outputs/multimodal-mimic-3-pretraining-epoch-200
  • Download in-hospital-motality-6-48.tar.gz dataset from above project and put them into the root path
  • Download raw-mimic3.tar.gz raw data put the folder into the root path
  • Download valset.tar.gz and put it into multimodal_clinical_pretraining/resources/

``` ubuntu@ip:~/workspace/multimodal-mimic3-pretraining-epoch200$ tree -L 2 . ├── CITATION.cff ├── Makefile ├── README.md ├── READMEMODELARCH.md ├── READMlog.md ├── cost-time.md ├── documents │ └── dataset.md ├── exp │ └── in-hospital-mortality ├── expoutputs │ └── multimodal-mimic-3-pretraining-epoch-200 ├── experiments │ └── measurementnotes ├── imgs │ ├── W&B Chart 332025, 112437 am.png │ ├── W&B Chart 332025, 112750 am.png │ ├── W&B Chart 332025, 112812 am.png │ ├── W&B Chart 732025, 103454 am.png │ ├── W&B Chart 732025, 103512 am.png │ ├── W&B Chart 732025, 103533 am.png │ ├── W&B Chart 732025, 103544 am.png │ ├── W&B Chart 732025, 105050 am.png │ ├── W&B Chart 732025, 105357 am.png │ ├── W&B Chart 732025, 105850 am.png │ ├── W&B Chart 732025, 105857 am.png │ ├── W&B Chart 732025, 105902 am.png │ ├── resultofevaluationds.png │ └── trainingtime.png ├── in-hospital-mortality-12 │ ├── test │ ├── testlistfile.csv │ ├── train │ ├── trainlistfile.csv │ └── vallistfile.csv ├── in-hospital-mortality-18 │ ├── test │ ├── testlistfile.csv │ ├── train │ ├── trainlistfile.csv │ └── vallistfile.csv ├── in-hospital-mortality-24 │ ├── test │ ├── testlistfile.csv │ ├── train │ ├── trainlistfile.csv │ └── vallistfile.csv ├── in-hospital-mortality-30 │ ├── 1percenttestlistfile.csv │ ├── 1percenttrainlistfile.csv │ ├── 1percentvallistfile.csv │ ├── test │ └── train ├── in-hospital-mortality-36 │ ├── 1percenttestlistfile.csv │ ├── 1percenttrainlistfile.csv │ ├── 1percentvallistfile.csv │ ├── test │ └── train ├── in-hospital-mortality-42 │ ├── 1percenttestlistfile.csv │ ├── 1percenttrainlistfile.csv │ ├── 1percentvallistfile.csv │ ├── test │ └── train ├── in-hospital-mortality-48 │ ├── test │ ├── testlistfile.csv │ ├── train │ ├── trainlistfile.csv │ └── vallistfile.csv ├── in-hospital-mortality-6 │ ├── test │ ├── testlistfile.csv │ ├── train │ ├── trainlistfile.csv │ └── vallistfile.csv ├── in-hospital-mortality-6-48.tar.gz ├── logs │ ├── 12hlog5dec.txt │ ├── trainlog36600.txt │ └── trainlogs4824nov.txt ├── mimic3-benchmarks │ ├── createdecompensation.py │ ├── createinhospitalmortality.py │ ├── createlengthofstay.py │ ├── createmultitask.py │ ├── createphenotyping.py │ ├── extractepisodesfromsubjects.py │ ├── in-hospital-mortality │ ├── in-hospital-mortality-downstream │ └── root ├── multimodalclinicalpretraining │ ├── init.py │ ├── pycache │ ├── data │ ├── distributedutils.py │ ├── loss.py │ ├── models │ ├── optim │ ├── pretrain │ ├── resources │ ├── scheduler │ └── utils.py ├── raw-mimic3 │ ├── ICUSTAYS.csv │ └── NOTEEVENTS.csv ├── scripts │ └── calculateexecutiontime.sh ├── testnotesdataset.pkl ├── trainnotesdataset.pkl ├── valnotesdataset.pkl └── wandb ├── debug-internal.log -> run-20250304100151-bqulgoqf/logs/debug-internal.log ├── debug.log -> run-20250304100151-bqulgoqf/logs/debug.log ├── latest-run -> run-20250304100151-bqulgoqf ├── run-20250302051114-nnfq92sr ├── run-20250302231213-6odzmeub ├── run-20250302231826-g8u7nzsm ├── run-20250304025141-5o65hj3j ├── run-20250304045655-v46aka9n ├── run-20250304061911-c5pnhukq ├── run-20250304062932-t2zgvzww ├── run-20250304064307-m5ss0f6h ├── run-20250304064926-em2k41io ├── run-20250304070123-fcbuonjr ├── run-20250304070611-stzzyoax ├── run-20250304071730-t5s3jpn9 ├── run-20250304072430-6jpgoob4 ├── run-20250304073736-32tqbycx ├── run-20250304074443-13w4jjnl ├── run-20250304075835-o3mnqra5 ├── run-20250304084711-z0on6zav └── run-20250304100151-bqulgoqf

69 directories, 117 files ```

Citation

bibtex @software{Li_Clinical_Learning_for_2024, author = {Li, Bowen}, doi = {<>}, month = dec, title = {{Clinical Learning for Early Recognition}}, url = {https://github.com/Aisuko/clear}, version = {1.0.0}, year = {2024} }

Acknowledgements

Thanks for your contribution.

Owner

  • Name: Bowen
  • Login: Aisuko
  • Kind: user
  • Location: Global
  • Company: RMIT

Member of the GNU Hurd | previously @rancher | Founder of @SkywardAI | PhD candidate at RMIT

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
  - family-names: "Li"
    given-names: "Bowen"
    orcid: "https://orcid.org/0009-0007-6470-5607"
title: "Clinical Learning for Early Recognition"
version: 1.0.0
doi: <>
date-released: 2024-12-08
url: "https://github.com/Aisuko/clear"

GitHub Events

Total
  • Watch event: 1
  • Public event: 1
  • Push event: 5
  • Create event: 6
Last Year
  • Watch event: 1
  • Public event: 1
  • Push event: 5
  • Create event: 6

Committers

Last synced: 6 months ago

All Time
  • Total Commits: 7
  • Total Committers: 1
  • Avg Commits per committer: 7.0
  • Development Distribution Score (DDS): 0.0
Past Year
  • Commits: 7
  • Committers: 1
  • Avg Commits per committer: 7.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
Bowen b****d@g****m 7

Issues and Pull Requests

Last synced: 7 months ago

All Time
  • Total issues: 0
  • Total pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Total issue authors: 0
  • Total pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels

Dependencies

.devcontainer/environment.yml pypi