blas-base-dspr

Perform the symmetric rank 1 operation `A = α*x*x^T + A`.

https://github.com/stdlib-js/blas-base-dspr

Science Score: 44.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (14.9%) to scientific vocabulary

Keywords

algebra array blas double dspr float64 float64array javascript level-2 linear math mathematics ndarray node node-js nodejs stdlib subroutines
Last synced: 4 months ago · JSON representation ·

Repository

Perform the symmetric rank 1 operation `A = α*x*x^T + A`.

Basic Info
Statistics
  • Stars: 1
  • Watchers: 2
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Topics
algebra array blas double dspr float64 float64array javascript level-2 linear math mathematics ndarray node node-js nodejs stdlib subroutines
Created over 1 year ago · Last pushed 7 months ago
Metadata Files
Readme Changelog Contributing License Code of conduct Citation Security

README.md

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

dspr

NPM version Build Status Coverage Status <!-- dependencies -->

Perform the symmetric rank 1 operation A = α*x*x^T + A.

## Installation ```bash npm install @stdlib/blas-base-dspr ``` Alternatively, - To load the package in a website via a `script` tag without installation and bundlers, use the [ES Module][es-module] available on the [`esm`][esm-url] branch (see [README][esm-readme]). - If you are using Deno, visit the [`deno`][deno-url] branch (see [README][deno-readme] for usage intructions). - For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [`umd`][umd-url] branch (see [README][umd-readme]). The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships. To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
## Usage ```javascript var dspr = require( '@stdlib/blas-base-dspr' ); ``` #### dspr( order, uplo, N, α, x, sx, AP ) Performs the symmetric rank 1 operation `A = α*x*x^T + A` where `α` is a scalar, `x` is an `N` element vector, and `A` is an `N` by `N` symmetric matrix supplied in packed form. ```javascript var Float64Array = require( '@stdlib/array-float64' ); var AP = new Float64Array( [ 1.0, 2.0, 3.0, 1.0, 2.0, 1.0 ] ); var x = new Float64Array( [ 1.0, 2.0, 3.0 ] ); dspr( 'row-major', 'upper', 3, 1.0, x, 1, AP ); // AP => [ 2.0, 4.0, 6.0, 5.0, 8.0, 10.0 ] ``` The function has the following parameters: - **order**: storage layout. - **uplo**: specifies whether the upper or lower triangular part of the symmetric matrix `A` is supplied. - **N**: number of elements along each dimension of `A`. - **α**: scalar constant. - **x**: input [`Float64Array`][mdn-float64array]. - **sx**: index increment for `x`. - **AP**: packed form of a symmetric matrix `A` stored as a [`Float64Array`][mdn-float64array]. The stride parameters determine how elements in the input arrays are accessed at runtime. For example, to iterate over the elements of `x` in reverse order, ```javascript var Float64Array = require( '@stdlib/array-float64' ); var AP = new Float64Array( [ 1.0, 2.0, 3.0, 1.0, 2.0, 1.0 ] ); var x = new Float64Array( [ 3.0, 2.0, 1.0 ] ); dspr( 'row-major', 'upper', 3, 1.0, x, -1, AP ); // AP => [ 2.0, 4.0, 6.0, 5.0, 8.0, 10.0 ] ``` Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. ```javascript var Float64Array = require( '@stdlib/array-float64' ); // Initial arrays... var x0 = new Float64Array( [ 0.0, 3.0, 2.0, 1.0 ] ); var AP = new Float64Array( [ 1.0, 2.0, 3.0, 1.0, 2.0, 1.0 ] ); // Create offset views... var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element dspr( 'row-major', 'upper', 3, 1.0, x1, -1, AP ); // AP => [ 2.0, 4.0, 6.0, 5.0, 8.0, 10.0 ] ``` #### dspr.ndarray( uplo, N, α, x, sx, ox, AP, sap, oap ) Performs the symmetric rank 1 operation `A = α*x*x^T + A`, using alternative indexing semantics and where `α` is a scalar, `x` is an `N` element vector, and `A` is an `N` by `N` symmetric matrix supplied in packed form. ```javascript var Float64Array = require( '@stdlib/array-float64' ); var AP = new Float64Array( [ 1.0, 1.0, 2.0, 1.0, 2.0, 3.0 ] ); var x = new Float64Array( [ 1.0, 2.0, 3.0 ] ); dspr.ndarray( 'row-major', 'lower', 3, 1.0, x, 1, 0, AP, 1, 0 ); // AP => [ 2.0, 3.0, 6.0, 4.0, 8.0, 12.0 ] ``` The function has the following additional parameters: - **ox**: starting index for `x`. - **sap**: `AP` stride length. - **oap**: starting index for `AP`. While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, ```javascript var Float64Array = require( '@stdlib/array-float64' ); var AP = new Float64Array( [ 1.0, 2.0, 3.0, 1.0, 2.0, 1.0 ] ); var x = new Float64Array( [ 3.0, 2.0, 1.0 ] ); dspr.ndarray( 'row-major', 'upper', 3, 1.0, x, -1, 2, AP, 1, 0 ); // AP => [ 2.0, 4.0, 6.0, 5.0, 8.0, 10.0 ] ```
## Notes - `dspr()` corresponds to the [BLAS][blas] level 2 function [`dspr`][blas-dspr].
## Examples ```javascript var discreteUniform = require( '@stdlib/random-array-discrete-uniform' ); var dspr = require( '@stdlib/blas-base-dspr' ); var opts = { 'dtype': 'float64' }; var N = 5; var AP = discreteUniform( N * ( N + 1 ) / 2, -10.0, 10.0, opts ); var x = discreteUniform( N, -10.0, 10.0, opts ); dspr( 'column-major', 'upper', N, 1.0, x, 1, AP ); console.log( AP ); dspr.ndarray( 'column-major', 'upper', N, 1.0, x, 1, 0, AP, 1, 0 ); console.log( AP ); ```

## C APIs
### Usage ```c TODO ``` #### TODO TODO. ```c TODO ``` TODO ```c TODO ```
### Examples ```c TODO ```

* * * ## Notice This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more. For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib]. #### Community [![Chat][chat-image]][chat-url] --- ## License See [LICENSE][stdlib-license]. ## Copyright Copyright © 2016-2025. The Stdlib [Authors][stdlib-authors].

Owner

  • Name: stdlib
  • Login: stdlib-js
  • Kind: organization

Standard library for JavaScript.

Citation (CITATION.cff)

cff-version: 1.2.0
title: stdlib
message: >-
  If you use this software, please cite it using the
  metadata from this file.

type: software

authors:
  - name: The Stdlib Authors
    url: https://github.com/stdlib-js/stdlib/graphs/contributors

repository-code: https://github.com/stdlib-js/stdlib
url: https://stdlib.io

abstract: |
  Standard library for JavaScript and Node.js.

keywords:
  - JavaScript
  - Node.js
  - TypeScript
  - standard library
  - scientific computing
  - numerical computing
  - statistical computing

license: Apache-2.0 AND BSL-1.0

date-released: 2016

GitHub Events

Total
  • Push event: 8
Last Year
  • Push event: 8