eispy2d
An Open-Source Python Library for the development of algorithms for 2D Electromagnetic Inverse Scattering Problems.
Science Score: 67.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 1 DOI reference(s) in README -
✓Academic publication links
Links to: arxiv.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (20.5%) to scientific vocabulary
Keywords
Repository
An Open-Source Python Library for the development of algorithms for 2D Electromagnetic Inverse Scattering Problems.
Basic Info
- Host: GitHub
- Owner: andre-batista
- License: gpl-3.0
- Language: Python
- Default Branch: main
- Homepage: https://andre-batista.github.io/eispy2d
- Size: 7.87 MB
Statistics
- Stars: 29
- Watchers: 3
- Forks: 4
- Open Issues: 1
- Releases: 0
Topics
Metadata Files
README.md
eispy2d
An Open-Source Python Library for the development of algorithms for 2D Electromagnetic Inverse Scattering Problems (EISPs).
Motivation
This library was thought to provide a common and basic framework for researchers that want to test new ideas about algorithms for EISPs. Then, they will not need to develop the whole structure (domain model, discretization formulations, forward solvers, data visualization, statistical inference, etc).
What can I do with this library?
With the tools in this library, you can represent an instance of EISP, develop algorithms, run them, and analyze the results in many different ways. The library provides specific implementations for case studies and benchmarking, so one can get preliminary results, measure the performance, and compare with different algorithms or different versions of the same algorithm.
Model assumptions
Besides considering the two-dimensional formulation, we are assuming as well TMz polarization of incident waves and linear, isotropic, non-dispersive, and non-magnetic materials.
Install
Initially, the library was thought to be a collection of ".py" files that anyone can download and add to his/her project. It would be amazing if, one day, this library became a well-organized Python package which one can install through Pip or Conda. But, as this is an implementation developed by only one person, then these steps will be considered someday in the future. For while, you just need to download the codes and call the modules as you do with any library that you create.
Dependencies
Before using eispy2d, please ensure you have all the required dependencies installed. The project includes a requirements.txt file listing all necessary packages. You can install these dependencies by running pip install -r requirements.txt in your command line or terminal. These packages are essential for the proper functioning of the library, including numerical computations, visualization tools, and optimization algorithms that power the electromagnetic inverse scattering solvers.
How to use
You may find usages examples here. There are scripts and Jupyter Notebooks in which you can see how the classes are called, how to build a problem, how to run an experiment, etc.
Contribute
You are totally welcome to contribute to this library by finding bugs, suggesting changes, implementing the algorithms in the literature, and providing your algorithms so others can use them to compare in their experiments. You may add issues, send pull requests or contact me through e-mail.
Citation
We've already written an article describing the library. While it is still under review, its preprint version is available at the arXiv repository via this link. If you use this library, you may acknowledge by citing it:
@ARTICLE{batista2025eispy2d,
author = {Batista, André Costa and Adriano, Ricardo and Batista, Lucas S.},
journal = {IEEE Access},
title = {EISPY2D: An Open-Source Python Library for the Development and Comparison of Algorithms in Two-Dimensional Electromagnetic Inverse Scattering Problems},
year = {2025},
volume = {},
number = {},
pages = {1-1},
keywords = {Libraries;Electromagnetic scattering;Imaging;Image reconstruction;Electromagnetics;Microwave theory and techniques;Microwave integrated circuits;Microwave imaging;Microwave FET integrated circuits;Inverse problems;Comparison of Algorithms;Electromagnetic Inverse Scattering Problem;Microwave Imaging;Open-Source Library;Optimization},
doi = {10.1109/ACCESS.2025.3573679}
}
Further information
For further information and questions, please send me an email.
Have fun! André
Owner
- Name: André Costa Batista
- Login: andre-batista
- Kind: user
- Location: Belo Horizonte, Brazil
- Company: Universidade Federal de Minas Gerais
- Website: https://www.researchgate.net/profile/Andre-Batista-16
- Twitter: andrecbatista
- Repositories: 3
- Profile: https://github.com/andre-batista
Hi there! I'm a grad student at Universidade Federal de Minas Gerais (Brazil). I like Optimization, Electromagnetics, and Inverse Problems.
Citation (CITATION.bib)
@ARTICLE{batista2025eispy2d,
author = {Batista, André Costa and Adriano, Ricardo and Batista, Lucas S.},
journal = {IEEE Access},
title = {EISPY2D: An Open-Source Python Library for the Development and Comparison of Algorithms in Two-Dimensional Electromagnetic Inverse Scattering Problems},
year = {2025},
volume = {},
number = {},
pages = {1-1},
keywords = {Libraries;Electromagnetic scattering;Imaging;Image reconstruction;Electromagnetics;Microwave theory and techniques;Microwave integrated circuits;Microwave imaging;Microwave FET integrated circuits;Inverse problems;Comparison of Algorithms;Electromagnetic Inverse Scattering Problem;Microwave Imaging;Open-Source Library;Optimization},
doi = {10.1109/ACCESS.2025.3573679}
}
GitHub Events
Total
- Issues event: 1
- Watch event: 10
- Push event: 7
- Fork event: 1
- Create event: 1
Last Year
- Issues event: 1
- Watch event: 10
- Push event: 7
- Fork event: 1
- Create event: 1
Issues and Pull Requests
Last synced: 11 months ago
All Time
- Total issues: 2
- Total pull requests: 0
- Average time to close issues: 1 day
- Average time to close pull requests: N/A
- Total issue authors: 2
- Total pull request authors: 0
- Average comments per issue: 2.5
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- BENYSU (1)
- aia39 (1)
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- ipykernel *
- joblib *
- matplotlib *
- numba *
- numpy *
- pingouin *
- scikit-image *
- scipy *
- statsmodels *