cutandrun

Analysis pipeline for CUT&RUN and CUT&TAG experiments that includes QC, support for spike-ins, IgG controls, peak calling and downstream analysis.

https://github.com/nf-core/cutandrun

Science Score: 77.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 16 DOI reference(s) in README
  • Academic publication links
    Links to: nature.com
  • Committers with academic emails
    3 of 12 committers (25.0%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (8.1%) to scientific vocabulary

Keywords

cutandrun cutandrun-seq cutandtag cutandtag-seq nextflow nf-core pipeline workflow

Keywords from Contributors

metagenomics bioinformatics peak-calling rna-seq pipelines workflows rna atac-seq viral variant-calling
Last synced: 6 months ago · JSON representation ·

Repository

Analysis pipeline for CUT&RUN and CUT&TAG experiments that includes QC, support for spike-ins, IgG controls, peak calling and downstream analysis.

Basic Info
  • Host: GitHub
  • Owner: nf-core
  • License: mit
  • Language: Nextflow
  • Default Branch: master
  • Homepage: https://nf-co.re/cutandrun
  • Size: 8.69 MB
Statistics
  • Stars: 98
  • Watchers: 172
  • Forks: 59
  • Open Issues: 48
  • Releases: 8
Topics
cutandrun cutandrun-seq cutandtag cutandtag-seq nextflow nf-core pipeline workflow
Created about 5 years ago · Last pushed 6 months ago
Metadata Files
Readme Changelog Contributing License Code of conduct Citation

README.md

nf-core/cutandrun

GitHub Actions CI Status GitHub Actions Linting Status AWS CI Cite with Zenodo

Nextflow run with conda run with docker run with singularity Launch on Nextflow Tower

Get help on SlackFollow on TwitterFollow on MastodonWatch on YouTube

Introduction

nf-core/cutandrun is a best-practice bioinformatic analysis pipeline for CUT&RUN, CUT&Tag, and TIPseq experimental protocols that were developed to study protein-DNA interactions and epigenomic profiling.

CUT&RUN

Meers, M. P., Bryson, T. D., Henikoff, J. G., & Henikoff, S. (2019). Improved CUT&RUN chromatin profiling tools. eLife, 8. https://doi.org/10.7554/eLife.46314

CUT&Tag

Kaya-Okur, H. S., Wu, S. J., Codomo, C. A., Pledger, E. S., Bryson, T. D., Henikoff, J. G., Ahmad, K., & Henikoff, S. (2019). CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nature Communications, 10(1), 1930. https://doi.org/10.1038/s41467-019-09982-5]

TIPseq

Bartlett, D. A., Dileep, V., Handa, T., Ohkawa, Y., Kimura, H., Henikoff, S., & Gilbert, D. M. (2021). High-throughput single-cell epigenomic profiling by targeted insertion of promoters (TIP-seq). Journal of Cell Biology, 220(12), e202103078. https://doi.org/10.1083/jcb.202103078

The pipeline is built using Nextflow, a workflow tool to run tasks across multiple compute infrastructures in a portable, reproducible manner. It is capable of using containerisation and package management making installation trivial and results highly reproducible. The Nextflow DSL2 implementation of this pipeline uses one container per process, which makes it easier to maintain and update software dependencies. Where possible, these processes have been submitted to and installed from nf-core/modules.

The pipeline has been developed with continuous integration (CI) and test driven development (TDD) at its core. nf-core code and module linting as well as a battery of over 100 unit and integration tests run on pull request to the main repository and on release of the pipeline. On official release, automated CI tests run the pipeline on a full-sized dataset on AWS cloud infrastructure. This ensures that the pipeline runs on AWS, has sensible resource allocation defaults set to run on real-world datasets, and permits the persistent storage of results to benchmark between pipeline releases and other analysis sources. The results obtained from the full-sized test can be viewed on the nf-core website.

pipeline_diagram

Pipeline summary

  1. Check input files
  2. Merge re-sequenced FastQ files (cat)
  3. Read QC (FastQC)
  4. Adapter and quality trimming (Trim Galore!)
  5. Alignment to both target and spike-in genomes (Bowtie 2)
  6. Filter on quality, sort and index alignments (samtools)
  7. Duplicate read marking (picard)
  8. Create bedGraph files (bedtools
  9. Create bigWig coverage files (bedGraphToBigWig)
  10. Peak calling (SEACR, MACS2)
  11. Consensus peak merging and reporting (bedtools)
  12. Library complexity (preseq)
  13. Fragment-based quality control (deepTools)
  14. Peak-based quality control (bedtools, custom python)
  15. Heatmap peak analysis (deepTools)
  16. Genome browser session (IGV)
  17. Present all QC in web-based report (MultiQC)

Usage

[!NOTE] If you are new to Nextflow and nf-core, please refer to this page on how to set-up Nextflow. Make sure to test your setup with -profile test before running the workflow on actual data.

First, prepare a samplesheet with your input data that looks as follows:

samplesheet.csv:

csv group,replicate,fastq_1,fastq_2,control h3k27me3,1,h3k27me3_rep1_r1.fastq.gz,h3k27me3_rep1_r2.fastq.gz,igg_ctrl h3k27me3,2,h3k27me3_rep2_r1.fastq.gz,h3k27me3_rep2_r2.fastq.gz,igg_ctrl igg_ctrl,1,igg_rep1_r1.fastq.gz,igg_rep1_r2.fastq.gz, igg_ctrl,2,igg_rep2_r1.fastq.gz,igg_rep2_r2.fastq.gz,

Each row represents a pair of fastq files (paired end).

Now, you can run the pipeline using:

nextflow run nf-core/cutandrun \ -profile \ --input samplesheet.csv \ --peakcaller 'seacr,MACS2' \ --genome GRCh38 \ --outdir

[!WARNING] Please provide pipeline parameters via the CLI or Nextflow -params-file option. Custom config files including those provided by the -c Nextflow option can be used to provide any configuration except for parameters; see docs.

  • Typical command for CUT&Run/CUT&Tag/TIPseq analysis:

Pipeline output

To see the the results of a test run with a full size dataset refer to the results tab on the nf-core website pipeline page. For more details about the output files and reports, please refer to the output documentation.

Credits

nf-core/cutandrun was originally written by Chris Cheshire (@chris-cheshire) and Charlotte West (@charlotte-west) from Luscombe Lab at The Francis Crick Institute, London, UK.

The pipeline structure and parts of the downstream analysis were adapted from the original CUT&Tag analysis protocol from the Henikoff Lab. The removal of duplicates arising from linear amplification (also known as T7 duplicates) in the TIPseq protocol was implemented as described in the original TIPseq paper.

We thank Harshil Patel (@drpatelh) and everyone in the Luscombe Lab (@luslab) for their extensive assistance in the development of this pipeline.

[The Francis Crick Institute](https://www.crick.ac.uk/)

Contributions and Support

If you would like to contribute to this pipeline, please see the contributing guidelines.

For further information or help, don't hesitate to get in touch on the Slack #cutandrun channel (you can join with this invite).

Citations

If you use nf-core/cutandrun for your analysis, please cite it using the following doi: 10.5281/zenodo.5653535

An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md file.

You can cite the nf-core publication as follows:

The nf-core framework for community-curated bioinformatics pipelines.

Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.

Nat Biotechnol. 2020 Feb 13. doi: 10.1038/s41587-020-0439-x.

Owner

  • Name: nf-core
  • Login: nf-core
  • Kind: organization
  • Email: core@nf-co.re

A community effort to collect a curated set of analysis pipelines built using Nextflow.

Citation (CITATIONS.md)

# nf-core/cutandrun: Citations

## [nf-core](https://pubmed.ncbi.nlm.nih.gov/32055031/)

> Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020 Mar;38(3):276-278. doi: 10.1038/s41587-020-0439-x. PubMed PMID: 32055031.

## [Nextflow](https://pubmed.ncbi.nlm.nih.gov/28398311/)

> Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017 Apr 11;35(4):316-319. doi: 10.1038/nbt.3820. PubMed PMID: 28398311.

## Pipeline tools

- [FastQC](https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

  > Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online].

- [MultiQC](https://pubmed.ncbi.nlm.nih.gov/27312411/)

  > Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016 Oct 1;32(19):3047-8. doi: 10.1093/bioinformatics/btw354. Epub 2016 Jun 16. PubMed PMID: 27312411; PubMed Central PMCID: PMC5039924.

- [bedtools](https://bedtools.readthedocs.io/en/latest/)

- [samtools](http://www.htslib.org/)

  > Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H, Twelve years of SAMtools and BCFtools, GigaScience (2021) 10(2) giab008.

- [bowtie2](http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml)

  > Langmead, B., Salzberg, S. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359 (2012). https://doi.org/10.1038/nmeth.1923.

- [deeptools](https://deeptools.readthedocs.io/en/develop/)

  > Ramírez, Fidel, Devon P. Ryan, Björn Grüning, Vivek Bhardwaj, Fabian Kilpert, Andreas S. Richter, Steffen Heyne, Friederike Dündar, and Thomas Manke. deepTools2: A next Generation Web Server for Deep-Sequencing Data Analysis. Nucleic Acids Research (2016). doi:10.1093/nar/gkw257.

- [seacr](https://github.com/FredHutch/SEACR)

  > Meers, M.P., Tenenbaum, D. & Henikoff, S. Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling. Epigenetics & Chromatin 12, 42 (2019). https://doi.org/10.1186/s13072-019-0287-4.

- [macs2](https://github.com/macs3-project/MACS)

- [picard](https://broadinstitute.github.io/picard/)
  > “Picard Toolkit.” 2019. Broad Institute, GitHub Repository. https://broadinstitute.github.io/picard/; Broad Institute.

## Software packaging/containerisation tools

- [Anaconda](https://anaconda.com)

  > Anaconda Software Distribution. Computer software. Vers. 2-2.4.0. Anaconda, Nov. 2016. Web.

- [Bioconda](https://pubmed.ncbi.nlm.nih.gov/29967506/)

  > Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J; Bioconda Team. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018 Jul;15(7):475-476. doi: 10.1038/s41592-018-0046-7. PubMed PMID: 29967506.

- [BioContainers](https://pubmed.ncbi.nlm.nih.gov/28379341/)

  > da Veiga Leprevost F, Grüning B, Aflitos SA, Röst HL, Uszkoreit J, Barsnes H, Vaudel M, Moreno P, Gatto L, Weber J, Bai M, Jimenez RC, Sachsenberg T, Pfeuffer J, Alvarez RV, Griss J, Nesvizhskii AI, Perez-Riverol Y. BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics. 2017 Aug 15;33(16):2580-2582. doi: 10.1093/bioinformatics/btx192. PubMed PMID: 28379341; PubMed Central PMCID: PMC5870671.

- [Docker](https://dl.acm.org/doi/10.5555/2600239.2600241)

  > Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux Journal, 2014(239), 2. doi: 10.5555/2600239.2600241.

- [Singularity](https://pubmed.ncbi.nlm.nih.gov/28494014/)

  > Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLoS One. 2017 May 11;12(5):e0177459. doi: 10.1371/journal.pone.0177459. eCollection 2017. PubMed PMID: 28494014; PubMed Central PMCID: PMC5426675.

GitHub Events

Total
  • Issues event: 13
  • Watch event: 13
  • Issue comment event: 39
  • Push event: 17
  • Pull request review comment event: 6
  • Pull request review event: 6
  • Pull request event: 19
  • Fork event: 12
  • Create event: 8
Last Year
  • Issues event: 13
  • Watch event: 13
  • Issue comment event: 39
  • Push event: 17
  • Pull request review comment event: 6
  • Pull request review event: 6
  • Pull request event: 19
  • Fork event: 12
  • Create event: 8

Committers

Last synced: over 2 years ago

All Time
  • Total Commits: 1,456
  • Total Committers: 12
  • Avg Commits per committer: 121.333
  • Development Distribution Score (DDS): 0.384
Past Year
  • Commits: 184
  • Committers: 6
  • Avg Commits per committer: 30.667
  • Development Distribution Score (DDS): 0.467
Top Committers
Name Email Commits
Chris Cheshire c****e@g****m 897
Charlotte West c****t@o****p 311
Tamara Hodgetts h****t@c****k 169
Teemu Rönkkö r****u@g****m 46
nf-core-bot c****e@n****e 20
Harshil Patel d****h@g****m 6
David Ladd d****d@m****u 2
Chris Fields c****s@i****u 1
Steffen Möller m****r@d****g 1
kevinmenden k****n@t****e 1
Jordi Deu-Pons j****i@j****t 1
Phil Ewels p****s@s****e 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 71
  • Total pull requests: 60
  • Average time to close issues: about 2 months
  • Average time to close pull requests: 16 days
  • Total issue authors: 42
  • Total pull request authors: 12
  • Average comments per issue: 1.9
  • Average comments per pull request: 1.07
  • Merged pull requests: 39
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 8
  • Pull requests: 9
  • Average time to close issues: 23 days
  • Average time to close pull requests: about 2 months
  • Issue authors: 8
  • Pull request authors: 7
  • Average comments per issue: 0.13
  • Average comments per pull request: 0.67
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • chris-cheshire (22)
  • blowinthesleep (3)
  • stfacc (2)
  • dshechter (2)
  • cutleraging (2)
  • Gin-Wang (2)
  • cjfields (2)
  • CloXD (2)
  • elissonnog (1)
  • GeroKn (1)
  • HardingZhang (1)
  • dhusmann (1)
  • ShannonTown (1)
  • Krutang (1)
  • jen-reeve (1)
Pull Request Authors
  • chris-cheshire (34)
  • nf-core-bot (22)
  • tamara-hodgetts (3)
  • smoe (2)
  • drpatelh (2)
  • Kuteliyafuka (1)
  • siddharthab (1)
  • Copilot (1)
  • FelixKrueger (1)
  • teemuronkko (1)
  • KunFang93 (1)
  • ahepperla (1)
  • suhrig (1)
  • Alessandro201 (1)
  • hsmurali (1)
Top Labels
Issue Labels
bug (48) enhancement (29) WIP (14) help wanted (2) question (2) invalid (1) feature-request (1) documentation (1)
Pull Request Labels
enhancement (3) bug (2)

Dependencies

.github/workflows/awsfulltest.yml actions
  • actions/upload-artifact v3 composite
  • nf-core/tower-action v3 composite
.github/workflows/awstest.yml actions
  • actions/upload-artifact v3 composite
  • nf-core/tower-action v3 composite
.github/workflows/branch.yml actions
  • mshick/add-pr-comment v1 composite
.github/workflows/ci.yml actions
  • Wandalen/wretry.action v1.0.11 composite
  • actions/cache v2 composite
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
  • actions/upload-artifact v2 composite
  • nf-core/setup-nextflow v1 composite
.github/workflows/fix-linting.yml actions
  • actions/checkout v3 composite
  • actions/setup-node v2 composite
.github/workflows/linting.yml actions
  • actions/checkout v2 composite
  • actions/setup-node v2 composite
  • actions/setup-python v3 composite
  • actions/upload-artifact v2 composite
  • mshick/add-pr-comment v1 composite
  • nf-core/setup-nextflow v1 composite
  • psf/black stable composite
.github/workflows/linting_comment.yml actions
  • dawidd6/action-download-artifact v2 composite
  • marocchino/sticky-pull-request-comment v2 composite
dev/docker/master_local_module_image/Dockerfile docker
  • nfcore/base 2.1 build
.github/workflows/clean-up.yml actions
  • actions/stale v7 composite
dev/docker/master_local_module_image/environment.yml conda
  • dask 2022.*
  • deeptools 3.5.*
  • numpy 1.22.*
  • pandas 1.4.*
  • pyranges 0.0.*
  • pysam 0.19.*
  • python 3.9.*
  • seaborn 0.11.*
  • upsetplot 0.6.*