boxmot
BoxMOT: Pluggable SOTA multi-object tracking modules modules for segmentation, object detection and pose estimation models
Science Score: 77.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 3 DOI reference(s) in README -
✓Academic publication links
Links to: arxiv.org, zenodo.org -
✓Committers with academic emails
1 of 46 committers (2.2%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.4%) to scientific vocabulary
Keywords
Keywords from Contributors
Scientific Fields
Repository
BoxMOT: Pluggable SOTA multi-object tracking modules modules for segmentation, object detection and pose estimation models
Basic Info
- Host: GitHub
- Owner: mikel-brostrom
- License: agpl-3.0
- Language: Python
- Default Branch: master
- Homepage: https://deepwiki.com/mikel-brostrom/boxmot
- Size: 127 MB
Statistics
- Stars: 7,639
- Watchers: 62
- Forks: 1,843
- Open Issues: 8
- Releases: 0
Topics
Metadata Files
README.md
BoxMOT: Pluggable SOTA multi-object tracking modules for segmentation, object detection and pose estimation models
🚀 Key Features
Pluggable Architecture
Easily swap in/out SOTA multi-object trackers.Universal Model Support
Integrate with any segmentation, object-detection and pose-estimation models that outputs bounding boxesBenchmark-Ready
Local evaluation pipelines for MOT17, MOT20, and DanceTrack ablation datasets with "official" ablation detectorsPerformance Modes
Reusable Detections & Embeddings
Save once, run evaluations with no redundant preprocessing lightning fast.
📊 Benchmark Results (MOT17 ablation split)
🔧 Installation
Install the boxmot package, including all requirements, in a Python>=3.9 environment:
bash
pip install boxmot
If you want to contribute to this package check how to contribute here
💻 CLI
BoxMOT provides a unified CLI boxmot with the following subcommands:
```bash Usage: boxmot COMMAND [ARGS]...
Commands: track Run tracking only generate Generate detections and embeddings eval Evaluate tracking performance using the official trackeval repository tune Tune tracker hyperparameters based on selected detections and embeddings ```
🐍 PYTHON
Seamlessly integrate BoxMOT directly into your Python MOT applications with your custom model.
```python import cv2 import torch import numpy as np from pathlib import Path from boxmot import BoostTrack from torchvision.models.detection import ( fasterrcnnresnet50fpnv2, FasterRCNNResNet50FPNV2_Weights as Weights )
Set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
Load model with pretrained weights and preprocessing transforms
weights = Weights.DEFAULT model = fasterrcnnresnet50fpnv2(weights=weights, boxscore_thresh=0.5) model.to(device).eval() transform = weights.transforms()
Initialize tracker
tracker = BoostTrack(reidweights=Path('osnetx025msmt17.pt'), device=device, half=False)
Start video capture
cap = cv2.VideoCapture(0)
with torch.inference_mode(): while True: success, frame = cap.read() if not success: break
# Convert frame to RGB and prepare for model
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
tensor = torch.from_numpy(rgb).permute(2, 0, 1).to(torch.uint8)
input_tensor = transform(tensor).to(device)
# Run detection
output = model([input_tensor])[0]
scores = output['scores'].cpu().numpy()
keep = scores >= 0.5
# Prepare detections for tracking
boxes = output['boxes'][keep].cpu().numpy()
labels = output['labels'][keep].cpu().numpy()
filtered_scores = scores[keep]
detections = np.concatenate([boxes, filtered_scores[:, None], labels[:, None]], axis=1)
# Update tracker and draw results
# INPUT: M X (x, y, x, y, conf, cls)
# OUTPUT: M X (x, y, x, y, id, conf, cls, ind)
res = tracker.update(detections, frame)
tracker.plot_results(frame, show_trajectories=True)
# Show output
cv2.imshow('BoXMOT + Torchvision', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
Clean up
cap.release() cv2.destroyAllWindows() ```
📝 Code Examples & Tutorials
Tracking
```bash $ boxmot track --yolo-model rf-detr-base.pt # bboxes only boxmot track --yolo-model yolox_s.pt # bboxes only boxmot track --yolo-model yolo12n.pt # bboxes only boxmot track --yolo-model yolo11n.pt # bboxes only boxmot track --yolo-model yolov10n.pt # bboxes only boxmot track --yolo-model yolov9c.pt # bboxes only boxmot track --yolo-model yolov8n.pt # bboxes only yolov8n-seg.pt # bboxes + segmentation masks yolov8n-pose.pt # bboxes + pose estimation ```Tracking methods
```bash $ boxmot track --tracking-method deepocsort strongsort ocsort bytetrack botsort boosttrack ```Tracking sources
Tracking can be run on most video formats ```bash $ boxmot track --source 0 # webcam img.jpg # image vid.mp4 # video path/ # directory path/*.jpg # glob 'https://youtu.be/Zgi9g1ksQHc' # YouTube 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream ```Select ReID model
Some tracking methods combine appearance description and motion in the process of tracking. For those which use appearance, you can choose a ReID model based on your needs from this [ReID model zoo](https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO). These model can be further optimized for you needs by the [reid_export.py](https://github.com/mikel-brostrom/yolo_tracking/blob/master/boxmot/appearance/reid_export.py) script ```bash $ boxmot track --source 0 --reid-model lmbn_n_cuhk03_d.pt # lightweight osnet_x0_25_market1501.pt mobilenetv2_x1_4_msmt17.engine resnet50_msmt17.onnx osnet_x1_0_msmt17.pt clip_market1501.pt # heavy clip_vehicleid.pt ... ```Filter tracked classes
By default the tracker tracks all MS COCO classes. If you want to track a subset of the classes that you model predicts, add their corresponding index after the classes flag, ```bash boxmot track --source 0 --yolo-model yolov8s.pt --classes 16 17 # COCO yolov8 model. Track cats and dogs, only ``` [Here](https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/) is a list of all the possible objects that a Yolov8 model trained on MS COCO can detect. Notice that the indexing for the classes in this repo starts at zeroEvaluation
Evaluate a combination of detector, tracking method and ReID model on standard MOT dataset or you custom one by ```bash # reproduce MOT17 README results $ boxmot eval --yolo-model yolox_x_MOT17_ablation.pt --reid-model lmbn_n_duke.pt --tracking-method boosttrack --source MOT17-ablation --verbose # MOT20 results $ boxmot eval --yolo-model yolox_x_MOT20_ablation.pt --reid-model lmbn_n_duke.pt --tracking-method boosttrack --source MOT20-ablation --verbose # Dancetrack results $ boxmot eval --yolo-model yolox_x_dancetrack_ablation.pt --reid-model lmbn_n_duke.pt --tracking-method boosttrack --source dancetrack-ablation --verbose # metrics on custom dataset $ boxmot eval --yolo-model yolov8n.pt --reid-model osnet_x0_25_msmt17.pt --tracking-method deepocsort --source ./assets/MOT17-mini/train --verbose ``` add `--gsi` to your command for postprocessing the MOT results by gaussian smoothed interpolation. Detections and embeddings are stored for the selected YOLO and ReID model respectively. They can then be loaded into any tracking algorithm. Avoiding the overhead of repeatedly generating this data.Evolution
We use a fast and elitist multiobjective genetic algorithm for tracker hyperparameter tuning. By default the objectives are: HOTA, MOTA, IDF1. Run it by ```bash # saves dets and embs under ./runs/dets_n_embs separately for each selected yolo and reid model $ boxmot generate --source ./assets/MOT17-mini/train --yolo-model yolov8n.pt yolov8s.pt --reid-model weights/osnet_x0_25_msmt17.pt # evolve parameters for specified tracking method using the selected detections and embeddings generated in the previous step $ boxmot tune --yolo-model yolov8n.pt --reid-model osnet_x0_25_msmt17.pt --n-trials 9 --tracking-method botsort --source ./assets/MOT17-mini/train ``` The set of hyperparameters leading to the best HOTA result are written to the tracker's config file.Export
We support ReID model export to ONNX, OpenVINO, TorchScript and TensorRT ```bash # export to ONNX $ python3 boxmot/appearance/reid_export.py --include onnx --device cpu # export to OpenVINO $ python3 boxmot/appearance/reid_export.py --include openvino --device cpu # export to TensorRT with dynamic input $ python3 boxmot/appearance/reid_export.py --include engine --device 0 --dynamic ```Contributors
Contact
For BoxMOT bugs and feature requests please visit GitHub Issues. For business inquiries or professional support requests please send an email to: box-mot@outlook.com
Owner
- Name: Mike
- Login: mikel-brostrom
- Kind: user
- Location: Sweden ⇄ Spain
- Repositories: 38
- Profile: https://github.com/mikel-brostrom
Applied and R&D ML
Citation (CITATION.cff)
cff-version: 15.0.2
preferred-citation:
type: software
message: "If you use Yolo Tracking, please cite it as below."
authors:
- family-names: Broström
given-names: Mikel
title: "BoxMOT: pluggable SOTA tracking modules for object detection, segmentation and pose estimation models"
version: 15.0.2
doi: https://zenodo.org/record/7629840
date-released: 2024-6
license: AGPL-3.0
url: "https://github.com/mikel-brostrom/boxmot"
Committers
Last synced: 8 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| mikel.brostrom | m****m@c****e | 1,961 |
| Mike | y****h@g****m | 650 |
| Mikel Broström | m****m@z****u | 134 |
| mikel-brostrom | m****0@g****m | 43 |
| Henrik | h****d@h****m | 39 |
| Fleyderer | k****v@u****u | 38 |
| renovate[bot] | 2****] | 37 |
| Mike | m****m@o****m | 26 |
| LilBabines | a****r@o****r | 21 |
| dependabot[bot] | 4****] | 17 |
| edblu1 | e****l@g****e | 9 |
| rolson24 | r****4@d****u | 8 |
| Justin Ruan | j****9@g****m | 5 |
| Johnny | j****3@g****m | 5 |
| mohit.gaikwad@wobot.ai | m****d@w****i | 4 |
| mikel | m****l@T****t | 4 |
| Saurabh Khanduja | s****a@i****i | 4 |
| beykun18 | 6****8 | 3 |
| Shanliang Yao | 1****6@q****m | 3 |
| Chanwut (Mick) Kittivorawong | 3****k | 3 |
| AshwinSakhare | a****e@z****m | 2 |
| Armin | m****n@g****m | 2 |
| Usama Imdad | u****n@g****m | 2 |
| florian-fischer-swarm | f****r@s****m | 2 |
| jjaegii | h****8@g****m | 2 |
| rslim | r****m@g****m | 2 |
| Henry | h****v@g****m | 2 |
| youngjae-avikus | y****e@k****m | 1 |
| mohamedsamirx | 9****x | 1 |
| liuweiqing | l****7@g****m | 1 |
| and 16 more... | ||
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 294
- Total pull requests: 591
- Average time to close issues: 19 days
- Average time to close pull requests: 4 days
- Total issue authors: 198
- Total pull request authors: 39
- Average comments per issue: 3.02
- Average comments per pull request: 0.63
- Merged pull requests: 310
- Bot issues: 2
- Bot pull requests: 186
Past Year
- Issues: 153
- Pull requests: 464
- Average time to close issues: 11 days
- Average time to close pull requests: 3 days
- Issue authors: 97
- Pull request authors: 21
- Average comments per issue: 2.43
- Average comments per pull request: 0.67
- Merged pull requests: 229
- Bot issues: 0
- Bot pull requests: 154
Top Authors
Issue Authors
- mikel-brostrom (11)
- microchila (9)
- wk565 (8)
- 17860421876 (7)
- fcu52005505 (6)
- starsky68 (5)
- Fleyderer (5)
- eeric (4)
- ghost (4)
- 22xxlin (4)
- Jackson-leo (4)
- alaxahml (4)
- MorningHero92 (4)
- Mirshal (4)
- davide-bontempelli-zupit (3)
Pull Request Authors
- mikel-brostrom (334)
- renovate[bot] (97)
- dependabot[bot] (54)
- github-actions[bot] (47)
- Fleyderer (20)
- ahmadmughees (9)
- usamaimdadsian (4)
- emirhanbayar (4)
- huanghany (4)
- minicom365 (3)
- marvel2010 (2)
- 14790897 (2)
- MlaikahImdad (2)
- asakhare-zdata (2)
- LilBabines (2)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- pypi 15,244 last-month
- Total dependent packages: 1
- Total dependent repositories: 1
- Total versions: 122
- Total maintainers: 1
pypi.org: boxmot
BoxMOT: pluggable SOTA tracking modules for segmentation, object detection and pose estimation models
- Documentation: https://boxmot.readthedocs.io/
- License: AGPL-3.0
-
Latest release: 15.0.2
published 5 months ago
Rankings
Maintainers (1)
Dependencies
- actions/checkout v4 composite
- actions/setup-python v4 composite
- actions/checkout v4 composite
- actions/create-release v1 composite
- actions/setup-python v4 composite
- pypa/gh-action-pypi-publish b7f401de30cb6434a1e19f805ff006643653240e composite
- actions/stale v8 composite
- nvcr.io/nvidia/pytorch 22.11-py3 build
- GitPython >=3.1.0
- PyYAML >=5.3.1
- filterpy >=1.4.5
- ftfy >=6.1.1
- gdown >=4.7.1
- lapx >=0.5.4
- loguru >=0.7.0
- numpy ==1.24.4
- opencv-python >=4.6.0
- pandas >=1.1.4
- pre-commit >=3.3.3
- regex >=2023.6.3
- scikit-learn >=1.3.0
- tensorboard >=2.13.0
- torch >=1.7.0
- torchvision >=0.8.1
- yacs >=0.1.8