statsmodels
Statsmodels: statistical modeling and econometrics in Python
Science Score: 54.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
✓Committers with academic emails
43 of 461 committers (9.3%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (13.7%) to scientific vocabulary
Keywords
Keywords from Contributors
Scientific Fields
Repository
Statsmodels: statistical modeling and econometrics in Python
Basic Info
- Host: GitHub
- Owner: statsmodels
- License: bsd-3-clause
- Language: Python
- Default Branch: main
- Homepage: http://www.statsmodels.org/devel/
- Size: 53 MB
Statistics
- Stars: 10,920
- Watchers: 288
- Forks: 3,284
- Open Issues: 2,924
- Releases: 30
Topics
Metadata Files
README.rst
.. image:: docs/source/images/statsmodels-logo-v2-horizontal.svg
:alt: Statsmodels logo
|PyPI Version| |Conda Version| |License| |Azure CI Build Status|
|Codecov Coverage| |Coveralls Coverage| |PyPI downloads| |Conda downloads|
About statsmodels
=================
statsmodels is a Python package that provides a complement to scipy for
statistical computations including descriptive statistics and estimation
and inference for statistical models.
Documentation
=============
The documentation for the latest release is at
https://www.statsmodels.org/stable/
The documentation for the development version is at
https://www.statsmodels.org/dev/
Recent improvements are highlighted in the release notes
https://www.statsmodels.org/stable/release/
Backups of documentation are available at https://statsmodels.github.io/stable/
and https://statsmodels.github.io/dev/.
Main Features
=============
* Linear regression models:
- Ordinary least squares
- Generalized least squares
- Weighted least squares
- Least squares with autoregressive errors
- Quantile regression
- Recursive least squares
* Mixed Linear Model with mixed effects and variance components
* GLM: Generalized linear models with support for all of the one-parameter
exponential family distributions
* Bayesian Mixed GLM for Binomial and Poisson
* GEE: Generalized Estimating Equations for one-way clustered or longitudinal data
* Discrete models:
- Logit and Probit
- Multinomial logit (MNLogit)
- Poisson and Generalized Poisson regression
- Negative Binomial regression
- Zero-Inflated Count models
* RLM: Robust linear models with support for several M-estimators.
* Time Series Analysis: models for time series analysis
- Complete StateSpace modeling framework
- Seasonal ARIMA and ARIMAX models
- VARMA and VARMAX models
- Dynamic Factor models
- Unobserved Component models
- Markov switching models (MSAR), also known as Hidden Markov Models (HMM)
- Univariate time series analysis: AR, ARIMA
- Vector autoregressive models, VAR and structural VAR
- Vector error correction model, VECM
- exponential smoothing, Holt-Winters
- Hypothesis tests for time series: unit root, cointegration and others
- Descriptive statistics and process models for time series analysis
* Survival analysis:
- Proportional hazards regression (Cox models)
- Survivor function estimation (Kaplan-Meier)
- Cumulative incidence function estimation
* Multivariate:
- Principal Component Analysis with missing data
- Factor Analysis with rotation
- MANOVA
- Canonical Correlation
* Nonparametric statistics: Univariate and multivariate kernel density estimators
* Datasets: Datasets used for examples and in testing
* Statistics: a wide range of statistical tests
- diagnostics and specification tests
- goodness-of-fit and normality tests
- functions for multiple testing
- various additional statistical tests
* Imputation with MICE, regression on order statistic and Gaussian imputation
* Mediation analysis
* Graphics includes plot functions for visual analysis of data and model results
* I/O
- Tools for reading Stata .dta files, but pandas has a more recent version
- Table output to ascii, latex, and html
* Miscellaneous models
* Sandbox: statsmodels contains a sandbox folder with code in various stages of
development and testing which is not considered "production ready". This covers
among others
- Generalized method of moments (GMM) estimators
- Kernel regression
- Various extensions to scipy.stats.distributions
- Panel data models
- Information theoretic measures
How to get it
=============
The main branch on GitHub is the most up to date code
https://www.github.com/statsmodels/statsmodels
Source download of release tags are available on GitHub
https://github.com/statsmodels/statsmodels/tags
Binaries and source distributions are available from PyPi
https://pypi.org/project/statsmodels/
Binaries can be installed in Anaconda
conda install statsmodels
Getting the latest code
=======================
Installing the most recent nightly wheel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The most recent nightly wheel can be installed using pip.
.. code:: bash
python -m pip install -i https://pypi.anaconda.org/scientific-python-nightly-wheels/simple statsmodels --upgrade --use-deprecated=legacy-resolver
Installing from sources
~~~~~~~~~~~~~~~~~~~~~~~
See INSTALL.txt for requirements or see the documentation
https://statsmodels.github.io/dev/install.html
Contributing
============
Contributions in any form are welcome, including:
* Documentation improvements
* Additional tests
* New features to existing models
* New models
https://www.statsmodels.org/stable/dev/test_notes
for instructions on installing statsmodels in *editable* mode.
License
=======
Modified BSD (3-clause)
Discussion and Development
==========================
Discussions take place on the mailing list
https://groups.google.com/group/pystatsmodels
and in the issue tracker. We are very interested in feedback
about usability and suggestions for improvements.
Bug Reports
===========
Bug reports can be submitted to the issue tracker at
https://github.com/statsmodels/statsmodels/issues
.. |Azure CI Build Status| image:: https://dev.azure.com/statsmodels/statsmodels-testing/_apis/build/status/statsmodels.statsmodels?branchName=main
:target: https://dev.azure.com/statsmodels/statsmodels-testing/_build/latest?definitionId=1&branchName=main
.. |Codecov Coverage| image:: https://codecov.io/gh/statsmodels/statsmodels/branch/main/graph/badge.svg
:target: https://codecov.io/gh/statsmodels/statsmodels
.. |Coveralls Coverage| image:: https://coveralls.io/repos/github/statsmodels/statsmodels/badge.svg?branch=main
:target: https://coveralls.io/github/statsmodels/statsmodels?branch=main
.. |PyPI downloads| image:: https://img.shields.io/pypi/dm/statsmodels?label=PyPI%20Downloads
:alt: PyPI - Downloads
:target: https://pypi.org/project/statsmodels/
.. |Conda downloads| image:: https://img.shields.io/conda/dn/conda-forge/statsmodels.svg?label=Conda%20downloads
:target: https://anaconda.org/conda-forge/statsmodels/
.. |PyPI Version| image:: https://img.shields.io/pypi/v/statsmodels.svg
:target: https://pypi.org/project/statsmodels/
.. |Conda Version| image:: https://anaconda.org/conda-forge/statsmodels/badges/version.svg
:target: https://anaconda.org/conda-forge/statsmodels/
.. |License| image:: https://img.shields.io/pypi/l/statsmodels.svg
:target: https://github.com/statsmodels/statsmodels/blob/main/LICENSE.txt
Owner
- Name: statsmodels
- Login: statsmodels
- Kind: organization
- Email: pystatsmodels@googlegroups.com
- Website: http://statsmodels.sourceforge.net/
- Repositories: 11
- Profile: https://github.com/statsmodels
Citation (CITATION.cff)
cff-version: 1.2.0
title: statsmodels
message: >-
Please use following citation to cite statsmodels in
scientific publications
type: software
authors:
- given-names: Seabold
family-names: Skipper
- given-names: Perktold
family-names: Josef
repository-code: 'https://github.com/statsmodels/statsmodels'
url: 'https://www.statsmodels.org/'
keywords:
- python
- data-science
- statistics
- prediction
- econometrics
- forecasting
- data-analysis
- regression-models
- hypothesis-testing
- generalized-linear-models
- timeseries-analysis
- robust-estimation
- count-model
license: BSD-3-Clause
preferred-citation:
type: article
authors:
- given-names: Seabold
family-names: Skipper
- given-names: Perktold
family-names: Josef
title: "statsmodels: Econometric and statistical modeling with python"
journal: "9th Python in Science Conference"
year: 2010
Committers
Last synced: 6 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Josef Perktold | j****d@g****m | 2,668 |
| Skipper Seabold | j****d@g****m | 2,411 |
| Kevin Sheppard | k****d@g****m | 1,388 |
| Chad Fulton | c****d@c****m | 1,223 |
| Kerby Shedden | k****n@u****u | 962 |
| Brock Mendel | j****l@g****m | 473 |
| Justin Grana | j****a@s****u | 204 |
| thequackdaddy | p****k@g****m | 161 |
| Vincent Arel-Bundock | v****l@u****u | 141 |
| langmore | i****e@g****m | 130 |
| Jonathan Taylor | j****o@m****u | 119 |
| tim.leslie | 115 | |
| Ralf Gommers | r****s@g****m | 101 |
| Bart Baker | b****r@g****m | 100 |
| vegcev | a****s@s****t | 97 |
| Wes McKinney | w****n@g****m | 93 |
| Agriya Khetarpal | 7****l | 87 |
| Christopher Burns | c****s@b****u | 82 |
| Samuel Scherrer | s****r@p****e | 82 |
| Evgeny Zhurko | e****o@g****m | 79 |
| Kevin Sheppard | k****d@g****m | 64 |
| Enrico Giampieri | e****i@u****t | 50 |
| Yichuan Liu | y****4@g****m | 44 |
| Paul Hobson | p****n@g****m | 43 |
| Jarrod Millman | j****n@g****m | 42 |
| Matthew Brett | m****t@g****m | 39 |
| Pamphile ROY | r****e@g****m | 36 |
| tvanzyl | t****l@g****m | 30 |
| Vincent Davis | v****t@v****t | 29 |
| Alex Griffing | a****i@n****u | 25 |
| and 431 more... | ||
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 713
- Total pull requests: 495
- Average time to close issues: 8 months
- Average time to close pull requests: 5 months
- Total issue authors: 375
- Total pull request authors: 114
- Average comments per issue: 3.17
- Average comments per pull request: 3.03
- Merged pull requests: 296
- Bot issues: 0
- Bot pull requests: 18
Past Year
- Issues: 155
- Pull requests: 193
- Average time to close issues: 7 days
- Average time to close pull requests: 4 days
- Issue authors: 94
- Pull request authors: 37
- Average comments per issue: 0.97
- Average comments per pull request: 1.4
- Merged pull requests: 119
- Bot issues: 0
- Bot pull requests: 10
Top Authors
Issue Authors
- josef-pkt (285)
- bashtage (12)
- jseabold (5)
- louisabraham (3)
- kloczek (3)
- quant12345 (3)
- larsoner (3)
- luke396 (3)
- dblim (3)
- celestinoxp (2)
- EBoiSha (2)
- marcdelabarrera (2)
- amaranthjinn (2)
- ahbon123 (2)
- hoechenberger (2)
Pull Request Authors
- bashtage (206)
- josef-pkt (42)
- dependabot[bot] (18)
- jbrockmendel (12)
- agriyakhetarpal (9)
- luke396 (8)
- boringbyte (6)
- star1327p (5)
- aglebov (5)
- jseabold (5)
- maxkuttner (4)
- quant12345 (4)
- EBoisseauSierra (4)
- jalopezp (4)
- mdruiter (4)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 6
-
Total downloads:
- pypi 21,722,685 last-month
- Total docker downloads: 384,168,899
-
Total dependent packages: 1,708
(may contain duplicates) -
Total dependent repositories: 25,954
(may contain duplicates) - Total versions: 110
- Total maintainers: 7
pypi.org: statsmodels
Statistical computations and models for Python
- Homepage: https://www.statsmodels.org/
- Documentation: https://www.statsmodels.org/stable/index.html
- License: BSD License
-
Latest release: 0.14.5
published 6 months ago
Rankings
Maintainers (5)
conda-forge.org: statsmodels
- Homepage: https://www.statsmodels.org
- License: BSD-3-Clause
-
Latest release: 0.13.5
published about 3 years ago
Rankings
proxy.golang.org: github.com/statsmodels/statsmodels
- Documentation: https://pkg.go.dev/github.com/statsmodels/statsmodels#section-documentation
- License: bsd-3-clause
-
Latest release: v0.14.5
published 6 months ago
Rankings
anaconda.org: statsmodels
Statsmodels is a Python module that allows users to explore data, estimate statistical models, and perform statistical tests. An extensive list of descriptive statistics, statistical tests, plotting functions, and result statistics are available for different types of data and each estimator. Researchers across fields may find that statsmodels fully meets their needs for statistical computing and data analysis in Python.
- Homepage: https://www.statsmodels.org
- License: BSD-3-Clause
-
Latest release: 0.14.5
published 6 months ago
Rankings
pypi.org: sm2
Bugfix Fork of statsmodels
- Documentation: https://sm2.readthedocs.io/
- License: BSD License
-
Latest release: 0.1.3
published over 7 years ago
Rankings
Maintainers (1)
pypi.org: statsmodels-dq
Statistical computations and models for Python
- Homepage: https://www.statsmodels.org/
- Documentation: https://www.statsmodels.org/stable/index.html
- License: BSD License
-
Latest release: 3.0
published over 6 years ago
Rankings
Maintainers (1)
Dependencies
- tibdex/backport v2 composite
- actions/checkout v3 composite
- github/codeql-action/analyze v2 composite
- github/codeql-action/autobuild v2 composite
- github/codeql-action/init v2 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- r-lib/actions/setup-pandoc v2 composite
- ts-graphviz/setup-graphviz v1 composite
- colorama * development
- cython >=0.29.28,<3.0.0 development
- flake8 * development
- isort * development
- joblib * development
- matplotlib >=3 development
- oldest-supported-numpy >=2022.4.18 development
- pytest * development
- pytest-randomly * development
- pytest-xdist * development
- pywinpty * development
- setuptools_scm * development
- arviz *
- jinja2 ==3.0.3
- jupyter *
- nbconvert *
- nbsphinx *
- notebook *
- numpydoc *
- pandas-datareader *
- pymc3 *
- pyyaml *
- seaborn *
- simplegeneric *
- sphinx ==5.3.0
- sphinx-material *
- theano-pymc *
- numpy >=1.22.3
- numpy >=1.18
- packaging >=21.3
- pandas >=1.0
- patsy >=0.5.2
- scipy >=1.4,