gpullama3.java
GPU-accelerated Llama3.java inference in pure Java using TornadoVM.
Science Score: 85.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 1 DOI reference(s) in README -
✓Academic publication links
Links to: springer.com -
✓Committers with academic emails
1 of 4 committers (25.0%) from academic institutions -
✓Institutional organization owner
Organization beehive-lab has institutional domain (apt.cs.manchester.ac.uk) -
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (10.5%) to scientific vocabulary
Keywords
Repository
GPU-accelerated Llama3.java inference in pure Java using TornadoVM.
Basic Info
- Host: GitHub
- Owner: beehive-lab
- License: mit
- Language: Java
- Default Branch: main
- Homepage: https://github.com/beehive-lab/GPULlama3.java
- Size: 34.6 MB
Statistics
- Stars: 162
- Watchers: 8
- Forks: 17
- Open Issues: 15
- Releases: 1
Topics
Metadata Files
README.md
GPULlama3.java powered by TornadoVM
|
Llama3 models written in native Java automatically accelerated on GPUs with TornadoVM.
Runs Llama3 inference efficiently using TornadoVM's GPU acceleration.
Currently, supports Llama3, Mistral, Qwen2.5, Qwen3 and Phi3 models in the GGUF format. Builds on Llama3.java by Alfonso² Peterssen. Previous integration of TornadoVM and Llama2 it can be found in llama2.tornadovm. |
[Interactive-mode] Running on a RTX 5090 with nvtop on bottom to track GPU utilization and memory usage.
[Instruct-mode] Running on a RTX 5090
TornadoVM-Accelerated Inference Performance and Optimization Status
We are at the early stages of Java entering the AI world with features added to the JVM that enable faster execution such as GPU acceleration, Vector acceleration, high-performance access to off-heap memory and others.
This repository provides the first Java-native implementation of Llama3 that automatically compiles and executes Java code on GPUs via TornadoVM.
The baseline numbers presented below provide a solid starting point for achieving more competitive performance compared to llama.cpp or native CUDA implementations.
Our roadmap provides the upcoming set of features that will dramatically improve the numbers below with the clear target being to achieve performance parity with the fastest implementations.
If you achieve additional performance data points (e.g. new hardware or platforms) please let us know to add them below.
In addition, if you are interested to learn more about the challenges of managed programming languages and GPU acceleration, you can read our book or consult the TornadoVM educational pages.
| Vendor / Backend | Hardware | Llama-3.2-1B-Instruct | Llama-3.2-3B-Instruct | Optimizations | |:----------------------------:|:------------:|:---------------------:|:---------------------:|:-------------:| | | | FP16 | FP16 | Support | | NVIDIA / OpenCL-PTX | RTX 3070 | 52 tokens/s | 22.96 tokens/s | ✅ | | | RTX 4090 | 66.07 tokens/s | 35.51 tokens/s | ✅ | | | RTX 5090 | 96.65 tokens/s | 47.68 tokens/s | ✅ | | | L4 Tensor | 52.96 tokens/s | 22.68 tokens/s | ✅ | | Intel / OpenCL | Arc A770 | 15.65 tokens/s | 7.02 tokens/s | (WIP) | | Apple Silicon / OpenCL | M3 Pro | 14.04 tokens/s | 6.78 tokens/s | (WIP) | | | M4 Pro | 16.77 tokens/s | 8.56 tokens/s | (WIP) | | AMD / OpenCL | Radeon RX | (WIP) | (WIP) | (WIP) |
⚠️ Note on Apple Silicon Performance
TornadoVM currently runs on Apple Silicon via OpenCL, which has been officially deprecated since macOS 10.14.
Despite being deprecated, OpenCL can still run on Apple Silicon; albeit, with older drivers which do not support all optimizations of TornadoVM. Therefore, the performance is not optimal since TornadoVM does not have a Metal backend yet (it currently has OpenCL, PTX, and SPIR-V backends). We recommend using Apple silicon for development and for performance testing to use OpenCL/PTX compatible Nvidia GPUs for the time being (until we add a Metal backend to TornadoVM and start optimizing it).
Setup & Configuration
Prerequisites
Ensure you have the following installed and configured:
- Java 21: Required for Vector API support & TornadoVM.
- TornadoVM with OpenCL or PTX backends.
- Maven: For building the Java project.
Install, Build, and Run
When cloning this repository, use the --recursive flag to ensure that TornadoVM is properly included as submodule:
```bash
Clone the repository with all submodules
git clone --recursive https://github.com/beehive-lab/GPULlama3.java.git
Navigate to the project directory
cd GPULlama3.java
Update the submodules to match the exact commit point recorded in this repository
git submodule update --recursive ```
On Linux or macOS
```bash
Enter the TornadoVM submodule directory
cd external/tornadovm
Optional: Create and activate a Python virtual environment if needed
python3 -m venv venv source ./venv/bin/activate
Install TornadoVM with a supported JDK 21 and select the backends (--backend opencl,ptx).
To see the compatible JDKs run: ./bin/tornadovm-installer --listJDKs
For example, to install with OpenJDK 21 and build the OpenCL backend, run:
./bin/tornadovm-installer --jdk jdk21 --backend opencl
Source the TornadoVM environment variables
source setvars.sh
Navigate back to the project root directory
cd ../../
Source the project-specific environment paths -> this will ensure the correct paths are set for the project and the TornadoVM SDK
Expect to see: [INFO] Environment configured for Llama3 with TornadoVM at: /home/YOURPATHTO_TORNADOVM
source set_paths
Build the project using Maven (skip tests for faster build)
mvn clean package -DskipTests or just make
make
Run the model (make sure you have downloaded the model file first - see below)
./llama-tornado --gpu --verbose-init --opencl --model beehive-llama-3.2-1b-instruct-fp16.gguf --prompt "tell me a joke" ```
On Windows
```bash
Enter the TornadoVM submodule directory
cd external/tornadovm
Optional: Create and activate a Python virtual environment if needed
python -m venv .venv .venv\Scripts\activate.bat .\bin\windowsMicrosoftStudioTools2022.cmd
Install TornadoVM with a supported JDK 21 and select the backends (--backend opencl,ptx).
To see the compatible JDKs run: ./bin/tornadovm-installer --listJDKs
For example, to install with OpenJDK 21 and build the OpenCL backend, run:
python bin\tornadovm-installer --jdk jdk21 --backend opencl
Source the TornadoVM environment variables
setvars.cmd
Navigate back to the project root directory
cd ../../
Source the project-specific environment paths -> this will ensure the correct paths are set for the project and the TornadoVM SDK
Expect to see: [INFO] Environment configured for Llama3 with TornadoVM at: C:\Users\YOURPATHTO_TORNADOVM
set_paths.cmd
Build the project using Maven (skip tests for faster build)
mvn clean package -DskipTests or just make
make
Run the model (make sure you have downloaded the model file first - see below)
python llama-tornado --gpu --verbose-init --opencl --model beehive-llama-3.2-1b-instruct-fp16.gguf --prompt "tell me a joke"
```
☕ Integration with Your Java Codebase or Tools
To integrate it into your codebase or IDE (e.g., IntelliJ) or custom build system (like IntelliJ, Maven, or Gradle), use the --show-command flag.
This flag shows the exact Java command with all JVM flags that are being invoked under the hood to enable seamless execution on GPUs with TornadoVM.
Hence, it makes it simple to replicate or embed the invoked flags in any external tool or codebase.
bash
llama-tornado --gpu --model beehive-llama-3.2-1b-instruct-fp16.gguf --prompt "tell me a joke" --show-command
📋 Click to see the JVM configuration
```java /home/mikepapadim/.sdkman/candidates/java/current/bin/java \ -server \ -XX:+UnlockExperimentalVMOptions \ -XX:+EnableJVMCI \ -Xms20g -Xmx20g \ --enable-preview \ -Djava.library.path=/home/mikepapadim/manchester/TornadoVM/bin/sdk/lib \ -Djdk.module.showModuleResolution=false \ --module-path .:/home/mikepapadim/manchester/TornadoVM/bin/sdk/share/java/tornado \ -Dtornado.load.api.implementation=uk.ac.manchester.tornado.runtime.tasks.TornadoTaskGraph \ -Dtornado.load.runtime.implementation=uk.ac.manchester.tornado.runtime.TornadoCoreRuntime \ -Dtornado.load.tornado.implementation=uk.ac.manchester.tornado.runtime.common.Tornado \ -Dtornado.load.annotation.implementation=uk.ac.manchester.tornado.annotation.ASMClassVisitor \ -Dtornado.load.annotation.parallel=uk.ac.manchester.tornado.api.annotations.Parallel \ -Dtornado.tvm.maxbytecodesize=65536 \ -Duse.tornadovm=true \ -Dtornado.threadInfo=false \ -Dtornado.debug=false \ -Dtornado.fullDebug=false \ -Dtornado.printKernel=false \ -Dtornado.print.bytecodes=false \ -Dtornado.device.memory=7GB \ -Dtornado.profiler=false \ -Dtornado.log.profiler=false \ -Dtornado.profiler.dump.dir=/home/mikepapadim/repos/gpu-llama3.java/prof.json \ -Dtornado.enable.fastMathOptimizations=true \ -Dtornado.enable.mathOptimizations=false \ -Dtornado.enable.nativeFunctions=fast \ -Dtornado.loop.interchange=true \ -Dtornado.eventpool.maxwaitevents=32000 \ "-Dtornado.opencl.compiler.flags=-cl-denorms-are-zero -cl-no-signed-zeros -cl-finite-math-only" \ --upgrade-module-path /home/mikepapadim/manchester/TornadoVM/bin/sdk/share/java/graalJars \ @/home/mikepapadim/manchester/TornadoVM/bin/sdk/etc/exportLists/common-exports \ @/home/mikepapadim/manchester/TornadoVM/bin/sdk/etc/exportLists/opencl-exports \ --add-modules ALL-SYSTEM,tornado.runtime,tornado.annotation,tornado.drivers.common,tornado.drivers.opencl \ -cp /home/mikepapadim/repos/gpu-llama3.java/target/gpu-llama3-1.0-SNAPSHOT.jar \ org.beehive.gpullama3.LlamaApp \ -m beehive-llama-3.2-1b-instruct-fp16.gguf \ --temperature 0.1 \ --top-p 0.95 \ --seed 1746903566 \ --max-tokens 512 \ --stream true \ --echo false \ -p "tell me a joke" \ --instruct ```The above model can we swapped with one of the other models, such as beehive-llama-3.2-3b-instruct-fp16.gguf or beehive-llama-3.2-8b-instruct-fp16.gguf, depending on your needs.
Check models below.
Download Model Files
Download FP16 quantized Llama-3 .gguf files from:
- https://huggingface.co/beehive-lab/Llama-3.2-1B-Instruct-GGUF-FP16
- https://huggingface.co/beehive-lab/Llama-3.2-3B-Instruct-GGUF-FP16
- https://huggingface.co/beehive-lab/Llama-3.2-8B-Instruct-GGUF-FP16
Download FP16 quantized Mistral .gguf files from:
- https://huggingface.co/collections/beehive-lab/mistral-gpullama3java-684afabb206136d2e9cd47e0
Download FP16 quantized Qwen3 .gguf files from:
- https://huggingface.co/ggml-org/Qwen3-0.6B-GGUF
- https://huggingface.co/ggml-org/Qwen3-1.7B-GGUF
- https://huggingface.co/ggml-org/Qwen3-4B-GGUF
- https://huggingface.co/ggml-org/Qwen3-8B-GGUF
Download FP16 quantized Qwen2.5 .gguf files from:
- https://huggingface.co/bartowski/Qwen2.5-0.5B-Instruct-GGUF
- https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct-GGUF
Download FP16 quantized DeepSeek-R1-Distill-Qwen .gguf files from:
- https://huggingface.co/hdnh2006/DeepSeek-R1-Distill-Qwen-1.5B-GGUF
Please be gentle with huggingface.co servers:
Note FP16 models are first-class citizens for the current version. ```
Llama 3.2 (1B) - FP16
wget https://huggingface.co/beehive-lab/Llama-3.2-1B-Instruct-GGUF-FP16/resolve/main/beehive-llama-3.2-1b-instruct-fp16.gguf
Llama 3.2 (3B) - FP16
wget https://huggingface.co/beehive-lab/Llama-3.2-3B-Instruct-GGUF-FP16/resolve/main/beehive-llama-3.2-3b-instruct-fp16.gguf
Llama 3 (8B) - FP16
wget https://huggingface.co/beehive-lab/Llama-3.2-8B-Instruct-GGUF-FP16/resolve/main/beehive-llama-3.2-8b-instruct-fp16.gguf
Mistral (7B) - FP16
wget https://huggingface.co/MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF/resolve/main/Mistral-7B-Instruct-v0.3.fp16.gguf
Qwen3 (0.6B) - FP16
wget https://huggingface.co/ggml-org/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B-f16.gguf
Qwen3 (1.7B) - FP16
wget https://huggingface.co/ggml-org/Qwen3-0.6B-GGUF/resolve/main/Qwen3-1.7B-f16.gguf
Qwen3 (4B) - FP16
wget https://huggingface.co/ggml-org/Qwen3-0.6B-GGUF/resolve/main/Qwen3-4B-f16.gguf
Qwen3 (8B) - FP16
wget https://huggingface.co/ggml-org/Qwen3-0.6B-GGUF/resolve/main/Qwen3-8B-f16.gguf
Phi-3-mini-4k - FP16
wget https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-gguf/resolve/main/Phi-3-mini-4k-instruct-fp16.gguf
Qwen2.5 (0.5B)
wget https://huggingface.co/bartowski/Qwen2.5-0.5B-Instruct-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-f16.gguf
Qwen2.5 (1.5B)
wget https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct-GGUF/resolve/main/qwen2.5-1.5b-instruct-fp16.gguf
DeepSeek-R1-Distill-Qwen (1.5B)
wget https://huggingface.co/hdnh2006/DeepSeek-R1-Distill-Qwen-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-F16.gguf ```
[Experimental] you can download the Q8 and Q4 used in the original implementation of Llama3.java, but for now are going to be dequanted to FP16 for TornadoVM support: ```
Llama 3.2 (1B) - Q4_0
curl -L -O https://huggingface.co/mukel/Llama-3.2-1B-Instruct-GGUF/resolve/main/Llama-3.2-1B-Instruct-Q4_0.gguf
Llama 3.2 (3B) - Q4_0
curl -L -O https://huggingface.co/mukel/Llama-3.2-3B-Instruct-GGUF/resolve/main/Llama-3.2-3B-Instruct-Q4_0.gguf
Llama 3 (8B) - Q4_0
curl -L -O https://huggingface.co/mukel/Meta-Llama-3-8B-Instruct-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf
Llama 3.2 (1B) - Q8_0
curl -L -O https://huggingface.co/mukel/Llama-3.2-1B-Instruct-GGUF/resolve/main/Llama-3.2-1B-Instruct-Q8_0.gguf
Llama 3.1 (8B) - Q8_0
curl -L -O https://huggingface.co/mukel/Meta-Llama-3.1-8B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-Q4_0.gguf ```
Running llama-tornado
To execute Llama3, or Mistral models with TornadoVM on GPUs use the llama-tornado script with the --gpu flag.
Usage Examples
Basic Inference
Run a model with a text prompt:
bash
./llama-tornado --gpu --verbose-init --opencl --model beehive-llama-3.2-1b-instruct-fp16.gguf --prompt "Explain the benefits of GPU acceleration."
GPU Execution (FP16 Model)
Enable GPU acceleration with Q8_0 quantization:
bash
./llama-tornado --gpu --verbose-init --model beehive-llama-3.2-1b-instruct-fp16.gguf --prompt "tell me a joke"
🐳 Docker
You can run GPULlama3.java fully containerized with GPU acceleration enabled via OpenCL or PTX using pre-built Docker images.
More information as well as examples to run with the containers are available at docker-gpullama3.java.
📦 Available Docker Images
| Backend | Docker Image | Pull Command |
|--------|---------------|---------------|
| OpenCL | beehivelab/gpullama3.java-nvidia-openjdk-opencl | docker pull beehivelab/gpullama3.java-nvidia-openjdk-opencl |
| PTX (CUDA) | beehivelab/gpullama3.java-nvidia-openjdk-ptx | docker pull beehivelab/gpullama3.java-nvidia-openjdk-ptx |
Example (OpenCL)
```bash docker run --rm -it --gpus all \ -v "$PWD":/data \ beehivelab/gpullama3.java-nvidia-openjdk-opencl \ /gpullama3/GPULlama3.java/llama-tornado \ --gpu --verbose-init \ --opencl \ --model /data/Llama-3.2-1B-Instruct.FP16.gguf \ --prompt "Tell me a joke"
```
Troubleshooting GPU Memory Issues
Out of Memory Error
You may encounter an out-of-memory error like:
Exception in thread "main" uk.ac.manchester.tornado.api.exceptions.TornadoOutOfMemoryException: Unable to allocate 100663320 bytes of memory.
To increase the maximum device memory, use -Dtornado.device.memory=<X>GB
This indicates that the default GPU memory allocation (7GB) is insufficient for your model.
Solution
First, check your GPU specifications. If your GPU has high memory capacity, you can increase the GPU memory allocation using the --gpu-memory flag:
```bash
For 3B models, try increasing to 15GB
./llama-tornado --gpu --model beehive-llama-3.2-3b-instruct-fp16.gguf --prompt "Tell me a joke" --gpu-memory 15GB
For 8B models, you may need even more (20GB or higher)
./llama-tornado --gpu --model beehive-llama-3.2-8b-instruct-fp16.gguf --prompt "Tell me a joke" --gpu-memory 20GB ```
GPU Memory Requirements by Model Size
| Model Size | Recommended GPU Memory | |-------------|------------------------| | 1B models | 7GB (default) | | 3-7B models | 15GB | | 8B models | 20GB+ |
Note: If you still encounter memory issues, try:
- Using Q40 instead of Q80 quantization (requires less memory).
- Closing other GPU-intensive applications in your system.
Command Line Options
Supported command-line options include:
```bash cmd ➜ llama-tornado --help usage: llama-tornado [-h] --model MODEL_PATH [--prompt PROMPT] [-sp SYSTEM_PROMPT] [--temperature TEMPERATURE] [--top-p TOP_P] [--seed SEED] [-n MAX_TOKENS] [--stream STREAM] [--echo ECHO] [-i] [--instruct] [--gpu] [--opencl] [--ptx] [--gpu-memory GPU_MEMORY] [--heap-min HEAP_MIN] [--heap-max HEAP_MAX] [--debug] [--profiler] [--profiler-dump-dir PROFILERDUMPDIR] [--print-bytecodes] [--print-threads] [--print-kernel] [--full-dump] [--show-command] [--execute-after-show] [--opencl-flags OPENCL_FLAGS] [--max-wait-events MAXWAITEVENTS] [--verbose]
GPU-accelerated LLaMA.java model runner using TornadoVM
options: -h, --help show this help message and exit --model MODEL_PATH Path to the LLaMA model file (e.g., beehive-llama-3.2-8b-instruct-fp16.gguf) (default: None)
LLaMA Configuration: --prompt PROMPT Input prompt for the model (default: None) -sp SYSTEMPROMPT, --system-prompt SYSTEMPROMPT System prompt for the model (default: None) --temperature TEMPERATURE Sampling temperature (0.0 to 2.0) (default: 0.1) --top-p TOPP Top-p sampling parameter (default: 0.95) --seed SEED Random seed (default: current timestamp) (default: None) -n MAXTOKENS, --max-tokens MAX_TOKENS Maximum number of tokens to generate (default: 512) --stream STREAM Enable streaming output (default: True) --echo ECHO Echo the input prompt (default: False) --suffix SUFFIX Suffix for fill-in-the-middle request (Codestral) (default: None)
Mode Selection: -i, --interactive Run in interactive/chat mode (default: False) --instruct Run in instruction mode (default) (default: True)
Hardware Configuration: --gpu Enable GPU acceleration (default: False) --opencl Use OpenCL backend (default) (default: None) --ptx Use PTX/CUDA backend (default: None) --gpu-memory GPUMEMORY GPU memory allocation (default: 7GB) --heap-min HEAPMIN Minimum JVM heap size (default: 20g) --heap-max HEAP_MAX Maximum JVM heap size (default: 20g)
Debug and Profiling: --debug Enable debug output (default: False) --profiler Enable TornadoVM profiler (default: False) --profiler-dump-dir PROFILERDUMPDIR Directory for profiler output (default: /home/mikepapadim/repos/gpu-llama3.java/prof.json)
TornadoVM Execution Verbose: --print-bytecodes Print bytecodes (tornado.print.bytecodes=true) (default: False) --print-threads Print thread information (tornado.threadInfo=true) (default: False) --print-kernel Print kernel information (tornado.printKernel=true) (default: False) --full-dump Enable full debug dump (tornado.fullDebug=true) (default: False) --verbose-init Enable timers for TornadoVM initialization (llama.EnableTimingForTornadoVMInit=true) (default: False)
Command Display Options: --show-command Display the full Java command that will be executed (default: False) --execute-after-show Execute the command after showing it (use with --show-command) (default: False)
Advanced Options: --opencl-flags OPENCLFLAGS OpenCL compiler flags (default: -cl-denorms-are-zero -cl-no-signed-zeros -cl-finite-math-only) --max-wait-events MAXWAIT_EVENTS Maximum wait events for TornadoVM event pool (default: 32000) --verbose, -v Verbose output (default: False)
```
Debug & Profiling Options
View TornadoVM's internal behavior: ```bash
Print thread information during execution
./llama-tornado --gpu --model model.gguf --prompt "..." --print-threads
Show bytecode compilation details
./llama-tornado --gpu --model model.gguf --prompt "..." --print-bytecodes
Display generated GPU kernel code
./llama-tornado --gpu --model model.gguf --prompt "..." --print-kernel
Enable full debug output with all details
./llama-tornado --gpu --model model.gguf --prompt "..." --debug --full-dump
Combine debug options
./llama-tornado --gpu --model model.gguf --prompt "..." --print-threads --print-bytecodes --print-kernel ```
Current Features & Roadmap
- Support for GGUF format models with full FP16 and partial support for Q80 and Q40 quantization.
- Instruction-following and chat modes for various use cases.
- Interactive CLI with
--interactiveand--instructmodes. - Flexible backend switching - choose OpenCL or PTX at runtime (need to build TornadoVM with both enabled).
- Cross-platform compatibility:
- ✅ NVIDIA GPUs (OpenCL & PTX )
- ✅ Intel GPUs (OpenCL)
- ✅ Apple GPUs (OpenCL)
Click here to view a more detailed list of the transformer optimizations implemented in TornadoVM.
Click here to see the roadmap of the project.
Acknowledgments
This work is partially funded by the following EU & UKRI grants (most recent first):
- EU Horizon Europe & UKRI AERO 101092850.
- EU Horizon Europe & UKRI P2CODE 101093069.
- EU Horizon Europe & UKRI ENCRYPT 101070670.
- EU Horizon Europe & UKRI TANGO 101070052.
License
MIT
Owner
- Name: Beehive lab
- Login: beehive-lab
- Kind: organization
- Location: United Kingdom
- Website: http://apt.cs.manchester.ac.uk/
- Repositories: 38
- Profile: https://github.com/beehive-lab
Beehive lab is part of the Advanced Processor Technologies Group at the University of Manchester specializing in hw/sw codesign.
Citation (CITATION.cff)
cff-version: 1.2.0 message: "If you use this software, please cite it as below." authors: - family-names: "Papadimitriou" given-names: "Michail" - family-names: "Xekalaki" given-names: "Mary" - family-names: "Fumero" given-names: "Juan" - family-names: "Stratikopolos" given-names: "Athanasios" - family-names: "Papadakis" given-names: "Orion" - family-names: "Kotselidis" given-names: "Christos" title: "GPULlama3.java" license: MIT License version: 0.1.0-beta date-released: "2025-05-30" url: "https://github.com/beehive-lab/GPULlama3.java"
GitHub Events
Total
- Create event: 5
- Issues event: 16
- Watch event: 103
- Delete event: 1
- Member event: 4
- Issue comment event: 39
- Push event: 31
- Public event: 1
- Pull request review event: 51
- Pull request review comment event: 45
- Pull request event: 33
- Fork event: 9
Last Year
- Create event: 5
- Issues event: 16
- Watch event: 103
- Delete event: 1
- Member event: 4
- Issue comment event: 39
- Push event: 31
- Public event: 1
- Pull request review event: 51
- Pull request review comment event: 45
- Pull request event: 33
- Fork event: 9
Committers
Last synced: 7 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| mikepapadim | m****m@h****m | 285 |
| Thanos Stratikopoulos | 3****a | 14 |
| MaryXek | x****y@g****m | 5 |
| Christos Kotselidis | c****s@m****k | 2 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 7 months ago
All Time
- Total issues: 0
- Total pull requests: 8
- Average time to close issues: N/A
- Average time to close pull requests: 16 minutes
- Total issue authors: 0
- Total pull request authors: 3
- Average comments per issue: 0
- Average comments per pull request: 0.5
- Merged pull requests: 8
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 8
- Average time to close issues: N/A
- Average time to close pull requests: 16 minutes
- Issue authors: 0
- Pull request authors: 3
- Average comments per issue: 0
- Average comments per pull request: 0.5
- Merged pull requests: 8
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- mikepapadim (8)
- orionpapadakis (1)
- AdamBien (1)
- svntax (1)
Pull Request Authors
- mikepapadim (13)
- stratika (5)
- kotselidis (3)
- orionpapadakis (2)
- dhruvarayasam (2)
- ayush0407 (1)
- svntax (1)
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- tornado:tornado-api 1.1.1-dev
- tornado:tornado-runtime 1.1.1-dev
- junit:junit 4.13.2 test

