gpullama3.java

GPU-accelerated Llama3.java inference in pure Java using TornadoVM.

https://github.com/beehive-lab/gpullama3.java

Science Score: 85.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 1 DOI reference(s) in README
  • Academic publication links
    Links to: springer.com
  • Committers with academic emails
    1 of 4 committers (25.0%) from academic institutions
  • Institutional organization owner
    Organization beehive-lab has institutional domain (apt.cs.manchester.ac.uk)
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (10.5%) to scientific vocabulary

Keywords

accelerators compilers deepseek-r1 gguf gpu java java21 llama3 llm mistral mistral-7b nvidia phi-3 phi-3-mini qwen2-5 qwen3 tornadovm
Last synced: 4 months ago · JSON representation ·

Repository

GPU-accelerated Llama3.java inference in pure Java using TornadoVM.

Basic Info
Statistics
  • Stars: 162
  • Watchers: 8
  • Forks: 17
  • Open Issues: 15
  • Releases: 1
Topics
accelerators compilers deepseek-r1 gguf gpu java java21 llama3 llm mistral mistral-7b nvidia phi-3 phi-3-mini qwen2-5 qwen3 tornadovm
Created 8 months ago · Last pushed 4 months ago
Metadata Files
Readme Contributing License Citation

README.md

GPULlama3.java powered by TornadoVM

Java Version TornadoVM OpenCL CUDA Docker OpenCL Docker PTX GPULlama3.java DeepWiki


Llama3 models written in native Java automatically accelerated on GPUs with TornadoVM. Runs Llama3 inference efficiently using TornadoVM's GPU acceleration.

Currently, supports Llama3, Mistral, Qwen2.5, Qwen3 and Phi3 models in the GGUF format.

Builds on Llama3.java by Alfonso² Peterssen. Previous integration of TornadoVM and Llama2 it can be found in llama2.tornadovm.

[Interactive-mode] Running on a RTX 5090 with nvtop on bottom to track GPU utilization and memory usage.

Demo

[Instruct-mode] Running on a RTX 5090

Demo

TornadoVM-Accelerated Inference Performance and Optimization Status

We are at the early stages of Java entering the AI world with features added to the JVM that enable faster execution such as GPU acceleration, Vector acceleration, high-performance access to off-heap memory and others.

This repository provides the first Java-native implementation of Llama3 that automatically compiles and executes Java code on GPUs via TornadoVM. The baseline numbers presented below provide a solid starting point for achieving more competitive performance compared to llama.cpp or native CUDA implementations. Our roadmap provides the upcoming set of features that will dramatically improve the numbers below with the clear target being to achieve performance parity with the fastest implementations.

If you achieve additional performance data points (e.g. new hardware or platforms) please let us know to add them below.

In addition, if you are interested to learn more about the challenges of managed programming languages and GPU acceleration, you can read our book or consult the TornadoVM educational pages.

| Vendor / Backend | Hardware | Llama-3.2-1B-Instruct | Llama-3.2-3B-Instruct | Optimizations | |:----------------------------:|:------------:|:---------------------:|:---------------------:|:-------------:| | | | FP16 | FP16 | Support | | NVIDIA / OpenCL-PTX | RTX 3070 | 52 tokens/s | 22.96 tokens/s | ✅ | | | RTX 4090 | 66.07 tokens/s | 35.51 tokens/s | ✅ | | | RTX 5090 | 96.65 tokens/s | 47.68 tokens/s | ✅ | | | L4 Tensor | 52.96 tokens/s | 22.68 tokens/s | ✅ | | Intel / OpenCL | Arc A770 | 15.65 tokens/s | 7.02 tokens/s | (WIP) | | Apple Silicon / OpenCL | M3 Pro | 14.04 tokens/s | 6.78 tokens/s | (WIP) | | | M4 Pro | 16.77 tokens/s | 8.56 tokens/s | (WIP) | | AMD / OpenCL | Radeon RX | (WIP) | (WIP) | (WIP) |

⚠️ Note on Apple Silicon Performance

TornadoVM currently runs on Apple Silicon via OpenCL, which has been officially deprecated since macOS 10.14.

Despite being deprecated, OpenCL can still run on Apple Silicon; albeit, with older drivers which do not support all optimizations of TornadoVM. Therefore, the performance is not optimal since TornadoVM does not have a Metal backend yet (it currently has OpenCL, PTX, and SPIR-V backends). We recommend using Apple silicon for development and for performance testing to use OpenCL/PTX compatible Nvidia GPUs for the time being (until we add a Metal backend to TornadoVM and start optimizing it).


Setup & Configuration

Prerequisites

Ensure you have the following installed and configured:

  • Java 21: Required for Vector API support & TornadoVM.
  • TornadoVM with OpenCL or PTX backends.
  • Maven: For building the Java project.

Install, Build, and Run

When cloning this repository, use the --recursive flag to ensure that TornadoVM is properly included as submodule:

```bash

Clone the repository with all submodules

git clone --recursive https://github.com/beehive-lab/GPULlama3.java.git

Navigate to the project directory

cd GPULlama3.java

Update the submodules to match the exact commit point recorded in this repository

git submodule update --recursive ```

On Linux or macOS

```bash

Enter the TornadoVM submodule directory

cd external/tornadovm

Optional: Create and activate a Python virtual environment if needed

python3 -m venv venv source ./venv/bin/activate

Install TornadoVM with a supported JDK 21 and select the backends (--backend opencl,ptx).

To see the compatible JDKs run: ./bin/tornadovm-installer --listJDKs

For example, to install with OpenJDK 21 and build the OpenCL backend, run:

./bin/tornadovm-installer --jdk jdk21 --backend opencl

Source the TornadoVM environment variables

source setvars.sh

Navigate back to the project root directory

cd ../../

Source the project-specific environment paths -> this will ensure the correct paths are set for the project and the TornadoVM SDK

Expect to see: [INFO] Environment configured for Llama3 with TornadoVM at: /home/YOURPATHTO_TORNADOVM

source set_paths

Build the project using Maven (skip tests for faster build)

mvn clean package -DskipTests or just make

make

Run the model (make sure you have downloaded the model file first - see below)

./llama-tornado --gpu --verbose-init --opencl --model beehive-llama-3.2-1b-instruct-fp16.gguf --prompt "tell me a joke" ```

On Windows

```bash

Enter the TornadoVM submodule directory

cd external/tornadovm

Optional: Create and activate a Python virtual environment if needed

python -m venv .venv .venv\Scripts\activate.bat .\bin\windowsMicrosoftStudioTools2022.cmd

Install TornadoVM with a supported JDK 21 and select the backends (--backend opencl,ptx).

To see the compatible JDKs run: ./bin/tornadovm-installer --listJDKs

For example, to install with OpenJDK 21 and build the OpenCL backend, run:

python bin\tornadovm-installer --jdk jdk21 --backend opencl

Source the TornadoVM environment variables

setvars.cmd

Navigate back to the project root directory

cd ../../

Source the project-specific environment paths -> this will ensure the correct paths are set for the project and the TornadoVM SDK

Expect to see: [INFO] Environment configured for Llama3 with TornadoVM at: C:\Users\YOURPATHTO_TORNADOVM

set_paths.cmd

Build the project using Maven (skip tests for faster build)

mvn clean package -DskipTests or just make

make

Run the model (make sure you have downloaded the model file first - see below)

python llama-tornado --gpu --verbose-init --opencl --model beehive-llama-3.2-1b-instruct-fp16.gguf --prompt "tell me a joke"

```

☕ Integration with Your Java Codebase or Tools

To integrate it into your codebase or IDE (e.g., IntelliJ) or custom build system (like IntelliJ, Maven, or Gradle), use the --show-command flag. This flag shows the exact Java command with all JVM flags that are being invoked under the hood to enable seamless execution on GPUs with TornadoVM. Hence, it makes it simple to replicate or embed the invoked flags in any external tool or codebase.

bash llama-tornado --gpu --model beehive-llama-3.2-1b-instruct-fp16.gguf --prompt "tell me a joke" --show-command

📋 Click to see the JVM configuration ```java /home/mikepapadim/.sdkman/candidates/java/current/bin/java \ -server \ -XX:+UnlockExperimentalVMOptions \ -XX:+EnableJVMCI \ -Xms20g -Xmx20g \ --enable-preview \ -Djava.library.path=/home/mikepapadim/manchester/TornadoVM/bin/sdk/lib \ -Djdk.module.showModuleResolution=false \ --module-path .:/home/mikepapadim/manchester/TornadoVM/bin/sdk/share/java/tornado \ -Dtornado.load.api.implementation=uk.ac.manchester.tornado.runtime.tasks.TornadoTaskGraph \ -Dtornado.load.runtime.implementation=uk.ac.manchester.tornado.runtime.TornadoCoreRuntime \ -Dtornado.load.tornado.implementation=uk.ac.manchester.tornado.runtime.common.Tornado \ -Dtornado.load.annotation.implementation=uk.ac.manchester.tornado.annotation.ASMClassVisitor \ -Dtornado.load.annotation.parallel=uk.ac.manchester.tornado.api.annotations.Parallel \ -Dtornado.tvm.maxbytecodesize=65536 \ -Duse.tornadovm=true \ -Dtornado.threadInfo=false \ -Dtornado.debug=false \ -Dtornado.fullDebug=false \ -Dtornado.printKernel=false \ -Dtornado.print.bytecodes=false \ -Dtornado.device.memory=7GB \ -Dtornado.profiler=false \ -Dtornado.log.profiler=false \ -Dtornado.profiler.dump.dir=/home/mikepapadim/repos/gpu-llama3.java/prof.json \ -Dtornado.enable.fastMathOptimizations=true \ -Dtornado.enable.mathOptimizations=false \ -Dtornado.enable.nativeFunctions=fast \ -Dtornado.loop.interchange=true \ -Dtornado.eventpool.maxwaitevents=32000 \ "-Dtornado.opencl.compiler.flags=-cl-denorms-are-zero -cl-no-signed-zeros -cl-finite-math-only" \ --upgrade-module-path /home/mikepapadim/manchester/TornadoVM/bin/sdk/share/java/graalJars \ @/home/mikepapadim/manchester/TornadoVM/bin/sdk/etc/exportLists/common-exports \ @/home/mikepapadim/manchester/TornadoVM/bin/sdk/etc/exportLists/opencl-exports \ --add-modules ALL-SYSTEM,tornado.runtime,tornado.annotation,tornado.drivers.common,tornado.drivers.opencl \ -cp /home/mikepapadim/repos/gpu-llama3.java/target/gpu-llama3-1.0-SNAPSHOT.jar \ org.beehive.gpullama3.LlamaApp \ -m beehive-llama-3.2-1b-instruct-fp16.gguf \ --temperature 0.1 \ --top-p 0.95 \ --seed 1746903566 \ --max-tokens 512 \ --stream true \ --echo false \ -p "tell me a joke" \ --instruct ```

The above model can we swapped with one of the other models, such as beehive-llama-3.2-3b-instruct-fp16.gguf or beehive-llama-3.2-8b-instruct-fp16.gguf, depending on your needs. Check models below.

Download Model Files

Download FP16 quantized Llama-3 .gguf files from: - https://huggingface.co/beehive-lab/Llama-3.2-1B-Instruct-GGUF-FP16 - https://huggingface.co/beehive-lab/Llama-3.2-3B-Instruct-GGUF-FP16 - https://huggingface.co/beehive-lab/Llama-3.2-8B-Instruct-GGUF-FP16

Download FP16 quantized Mistral .gguf files from: - https://huggingface.co/collections/beehive-lab/mistral-gpullama3java-684afabb206136d2e9cd47e0

Download FP16 quantized Qwen3 .gguf files from: - https://huggingface.co/ggml-org/Qwen3-0.6B-GGUF - https://huggingface.co/ggml-org/Qwen3-1.7B-GGUF - https://huggingface.co/ggml-org/Qwen3-4B-GGUF - https://huggingface.co/ggml-org/Qwen3-8B-GGUF

Download FP16 quantized Qwen2.5 .gguf files from: - https://huggingface.co/bartowski/Qwen2.5-0.5B-Instruct-GGUF - https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct-GGUF

Download FP16 quantized DeepSeek-R1-Distill-Qwen .gguf files from: - https://huggingface.co/hdnh2006/DeepSeek-R1-Distill-Qwen-1.5B-GGUF

Please be gentle with huggingface.co servers:

Note FP16 models are first-class citizens for the current version. ```

Llama 3.2 (1B) - FP16

wget https://huggingface.co/beehive-lab/Llama-3.2-1B-Instruct-GGUF-FP16/resolve/main/beehive-llama-3.2-1b-instruct-fp16.gguf

Llama 3.2 (3B) - FP16

wget https://huggingface.co/beehive-lab/Llama-3.2-3B-Instruct-GGUF-FP16/resolve/main/beehive-llama-3.2-3b-instruct-fp16.gguf

Llama 3 (8B) - FP16

wget https://huggingface.co/beehive-lab/Llama-3.2-8B-Instruct-GGUF-FP16/resolve/main/beehive-llama-3.2-8b-instruct-fp16.gguf

Mistral (7B) - FP16

wget https://huggingface.co/MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF/resolve/main/Mistral-7B-Instruct-v0.3.fp16.gguf

Qwen3 (0.6B) - FP16

wget https://huggingface.co/ggml-org/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B-f16.gguf

Qwen3 (1.7B) - FP16

wget https://huggingface.co/ggml-org/Qwen3-0.6B-GGUF/resolve/main/Qwen3-1.7B-f16.gguf

Qwen3 (4B) - FP16

wget https://huggingface.co/ggml-org/Qwen3-0.6B-GGUF/resolve/main/Qwen3-4B-f16.gguf

Qwen3 (8B) - FP16

wget https://huggingface.co/ggml-org/Qwen3-0.6B-GGUF/resolve/main/Qwen3-8B-f16.gguf

Phi-3-mini-4k - FP16

wget https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-gguf/resolve/main/Phi-3-mini-4k-instruct-fp16.gguf

Qwen2.5 (0.5B)

wget https://huggingface.co/bartowski/Qwen2.5-0.5B-Instruct-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-f16.gguf

Qwen2.5 (1.5B)

wget https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct-GGUF/resolve/main/qwen2.5-1.5b-instruct-fp16.gguf

DeepSeek-R1-Distill-Qwen (1.5B)

wget https://huggingface.co/hdnh2006/DeepSeek-R1-Distill-Qwen-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-F16.gguf ```

[Experimental] you can download the Q8 and Q4 used in the original implementation of Llama3.java, but for now are going to be dequanted to FP16 for TornadoVM support: ```

Llama 3.2 (1B) - Q4_0

curl -L -O https://huggingface.co/mukel/Llama-3.2-1B-Instruct-GGUF/resolve/main/Llama-3.2-1B-Instruct-Q4_0.gguf

Llama 3.2 (3B) - Q4_0

curl -L -O https://huggingface.co/mukel/Llama-3.2-3B-Instruct-GGUF/resolve/main/Llama-3.2-3B-Instruct-Q4_0.gguf

Llama 3 (8B) - Q4_0

curl -L -O https://huggingface.co/mukel/Meta-Llama-3-8B-Instruct-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf

Llama 3.2 (1B) - Q8_0

curl -L -O https://huggingface.co/mukel/Llama-3.2-1B-Instruct-GGUF/resolve/main/Llama-3.2-1B-Instruct-Q8_0.gguf

Llama 3.1 (8B) - Q8_0

curl -L -O https://huggingface.co/mukel/Meta-Llama-3.1-8B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-Q4_0.gguf ```


Running llama-tornado

To execute Llama3, or Mistral models with TornadoVM on GPUs use the llama-tornado script with the --gpu flag.

Usage Examples

Basic Inference

Run a model with a text prompt:

bash ./llama-tornado --gpu --verbose-init --opencl --model beehive-llama-3.2-1b-instruct-fp16.gguf --prompt "Explain the benefits of GPU acceleration."

GPU Execution (FP16 Model)

Enable GPU acceleration with Q8_0 quantization: bash ./llama-tornado --gpu --verbose-init --model beehive-llama-3.2-1b-instruct-fp16.gguf --prompt "tell me a joke"


🐳 Docker

You can run GPULlama3.java fully containerized with GPU acceleration enabled via OpenCL or PTX using pre-built Docker images. More information as well as examples to run with the containers are available at docker-gpullama3.java.

📦 Available Docker Images

| Backend | Docker Image | Pull Command | |--------|---------------|---------------| | OpenCL | beehivelab/gpullama3.java-nvidia-openjdk-opencl | docker pull beehivelab/gpullama3.java-nvidia-openjdk-opencl | | PTX (CUDA) | beehivelab/gpullama3.java-nvidia-openjdk-ptx | docker pull beehivelab/gpullama3.java-nvidia-openjdk-ptx |

Example (OpenCL)

```bash docker run --rm -it --gpus all \ -v "$PWD":/data \ beehivelab/gpullama3.java-nvidia-openjdk-opencl \ /gpullama3/GPULlama3.java/llama-tornado \ --gpu --verbose-init \ --opencl \ --model /data/Llama-3.2-1B-Instruct.FP16.gguf \ --prompt "Tell me a joke"

```

Troubleshooting GPU Memory Issues

Out of Memory Error

You may encounter an out-of-memory error like: Exception in thread "main" uk.ac.manchester.tornado.api.exceptions.TornadoOutOfMemoryException: Unable to allocate 100663320 bytes of memory. To increase the maximum device memory, use -Dtornado.device.memory=<X>GB

This indicates that the default GPU memory allocation (7GB) is insufficient for your model.

Solution

First, check your GPU specifications. If your GPU has high memory capacity, you can increase the GPU memory allocation using the --gpu-memory flag:

```bash

For 3B models, try increasing to 15GB

./llama-tornado --gpu --model beehive-llama-3.2-3b-instruct-fp16.gguf --prompt "Tell me a joke" --gpu-memory 15GB

For 8B models, you may need even more (20GB or higher)

./llama-tornado --gpu --model beehive-llama-3.2-8b-instruct-fp16.gguf --prompt "Tell me a joke" --gpu-memory 20GB ```

GPU Memory Requirements by Model Size

| Model Size | Recommended GPU Memory | |-------------|------------------------| | 1B models | 7GB (default) | | 3-7B models | 15GB | | 8B models | 20GB+ |

Note: If you still encounter memory issues, try:

  1. Using Q40 instead of Q80 quantization (requires less memory).
  2. Closing other GPU-intensive applications in your system.

Command Line Options

Supported command-line options include:

```bash cmd ➜ llama-tornado --help usage: llama-tornado [-h] --model MODEL_PATH [--prompt PROMPT] [-sp SYSTEM_PROMPT] [--temperature TEMPERATURE] [--top-p TOP_P] [--seed SEED] [-n MAX_TOKENS] [--stream STREAM] [--echo ECHO] [-i] [--instruct] [--gpu] [--opencl] [--ptx] [--gpu-memory GPU_MEMORY] [--heap-min HEAP_MIN] [--heap-max HEAP_MAX] [--debug] [--profiler] [--profiler-dump-dir PROFILERDUMPDIR] [--print-bytecodes] [--print-threads] [--print-kernel] [--full-dump] [--show-command] [--execute-after-show] [--opencl-flags OPENCL_FLAGS] [--max-wait-events MAXWAITEVENTS] [--verbose]

GPU-accelerated LLaMA.java model runner using TornadoVM

options: -h, --help show this help message and exit --model MODEL_PATH Path to the LLaMA model file (e.g., beehive-llama-3.2-8b-instruct-fp16.gguf) (default: None)

LLaMA Configuration: --prompt PROMPT Input prompt for the model (default: None) -sp SYSTEMPROMPT, --system-prompt SYSTEMPROMPT System prompt for the model (default: None) --temperature TEMPERATURE Sampling temperature (0.0 to 2.0) (default: 0.1) --top-p TOPP Top-p sampling parameter (default: 0.95) --seed SEED Random seed (default: current timestamp) (default: None) -n MAXTOKENS, --max-tokens MAX_TOKENS Maximum number of tokens to generate (default: 512) --stream STREAM Enable streaming output (default: True) --echo ECHO Echo the input prompt (default: False) --suffix SUFFIX Suffix for fill-in-the-middle request (Codestral) (default: None)

Mode Selection: -i, --interactive Run in interactive/chat mode (default: False) --instruct Run in instruction mode (default) (default: True)

Hardware Configuration: --gpu Enable GPU acceleration (default: False) --opencl Use OpenCL backend (default) (default: None) --ptx Use PTX/CUDA backend (default: None) --gpu-memory GPUMEMORY GPU memory allocation (default: 7GB) --heap-min HEAPMIN Minimum JVM heap size (default: 20g) --heap-max HEAP_MAX Maximum JVM heap size (default: 20g)

Debug and Profiling: --debug Enable debug output (default: False) --profiler Enable TornadoVM profiler (default: False) --profiler-dump-dir PROFILERDUMPDIR Directory for profiler output (default: /home/mikepapadim/repos/gpu-llama3.java/prof.json)

TornadoVM Execution Verbose: --print-bytecodes Print bytecodes (tornado.print.bytecodes=true) (default: False) --print-threads Print thread information (tornado.threadInfo=true) (default: False) --print-kernel Print kernel information (tornado.printKernel=true) (default: False) --full-dump Enable full debug dump (tornado.fullDebug=true) (default: False) --verbose-init Enable timers for TornadoVM initialization (llama.EnableTimingForTornadoVMInit=true) (default: False)

Command Display Options: --show-command Display the full Java command that will be executed (default: False) --execute-after-show Execute the command after showing it (use with --show-command) (default: False)

Advanced Options: --opencl-flags OPENCLFLAGS OpenCL compiler flags (default: -cl-denorms-are-zero -cl-no-signed-zeros -cl-finite-math-only) --max-wait-events MAXWAIT_EVENTS Maximum wait events for TornadoVM event pool (default: 32000) --verbose, -v Verbose output (default: False)

```

Debug & Profiling Options

View TornadoVM's internal behavior: ```bash

Print thread information during execution

./llama-tornado --gpu --model model.gguf --prompt "..." --print-threads

Show bytecode compilation details

./llama-tornado --gpu --model model.gguf --prompt "..." --print-bytecodes

Display generated GPU kernel code

./llama-tornado --gpu --model model.gguf --prompt "..." --print-kernel

Enable full debug output with all details

./llama-tornado --gpu --model model.gguf --prompt "..." --debug --full-dump

Combine debug options

./llama-tornado --gpu --model model.gguf --prompt "..." --print-threads --print-bytecodes --print-kernel ```

Current Features & Roadmap

  • Support for GGUF format models with full FP16 and partial support for Q80 and Q40 quantization.
  • Instruction-following and chat modes for various use cases.
  • Interactive CLI with --interactive and --instruct modes.
  • Flexible backend switching - choose OpenCL or PTX at runtime (need to build TornadoVM with both enabled).
  • Cross-platform compatibility:
    • ✅ NVIDIA GPUs (OpenCL & PTX )
    • ✅ Intel GPUs (OpenCL)
    • ✅ Apple GPUs (OpenCL)

Click here to view a more detailed list of the transformer optimizations implemented in TornadoVM.

Click here to see the roadmap of the project.


Acknowledgments

This work is partially funded by the following EU & UKRI grants (most recent first):


License

MIT

Owner

  • Name: Beehive lab
  • Login: beehive-lab
  • Kind: organization
  • Location: United Kingdom

Beehive lab is part of the Advanced Processor Technologies Group at the University of Manchester specializing in hw/sw codesign.

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Papadimitriou"
  given-names: "Michail"
- family-names: "Xekalaki"
  given-names: "Mary"
- family-names: "Fumero"
  given-names: "Juan"
- family-names: "Stratikopolos"
  given-names: "Athanasios"
- family-names: "Papadakis"
  given-names: "Orion"
- family-names: "Kotselidis"
  given-names: "Christos"
title: "GPULlama3.java"
license: MIT License
version: 0.1.0-beta
date-released: "2025-05-30"
url: "https://github.com/beehive-lab/GPULlama3.java"

GitHub Events

Total
  • Create event: 5
  • Issues event: 16
  • Watch event: 103
  • Delete event: 1
  • Member event: 4
  • Issue comment event: 39
  • Push event: 31
  • Public event: 1
  • Pull request review event: 51
  • Pull request review comment event: 45
  • Pull request event: 33
  • Fork event: 9
Last Year
  • Create event: 5
  • Issues event: 16
  • Watch event: 103
  • Delete event: 1
  • Member event: 4
  • Issue comment event: 39
  • Push event: 31
  • Public event: 1
  • Pull request review event: 51
  • Pull request review comment event: 45
  • Pull request event: 33
  • Fork event: 9

Committers

Last synced: 7 months ago

All Time
  • Total Commits: 306
  • Total Committers: 4
  • Avg Commits per committer: 76.5
  • Development Distribution Score (DDS): 0.069
Past Year
  • Commits: 306
  • Committers: 4
  • Avg Commits per committer: 76.5
  • Development Distribution Score (DDS): 0.069
Top Committers
Name Email Commits
mikepapadim m****m@h****m 285
Thanos Stratikopoulos 3****a 14
MaryXek x****y@g****m 5
Christos Kotselidis c****s@m****k 2
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 7 months ago

All Time
  • Total issues: 0
  • Total pull requests: 8
  • Average time to close issues: N/A
  • Average time to close pull requests: 16 minutes
  • Total issue authors: 0
  • Total pull request authors: 3
  • Average comments per issue: 0
  • Average comments per pull request: 0.5
  • Merged pull requests: 8
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 8
  • Average time to close issues: N/A
  • Average time to close pull requests: 16 minutes
  • Issue authors: 0
  • Pull request authors: 3
  • Average comments per issue: 0
  • Average comments per pull request: 0.5
  • Merged pull requests: 8
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • mikepapadim (8)
  • orionpapadakis (1)
  • AdamBien (1)
  • svntax (1)
Pull Request Authors
  • mikepapadim (13)
  • stratika (5)
  • kotselidis (3)
  • orionpapadakis (2)
  • dhruvarayasam (2)
  • ayush0407 (1)
  • svntax (1)
Top Labels
Issue Labels
models (4) enhancement (3) Tooling (3) documentation (2) help wanted (1) good first issue (1)
Pull Request Labels
documentation (4) enhancement (2) models (2) Tooling (1) refactoring (1)

Dependencies

pom.xml maven
  • tornado:tornado-api 1.1.1-dev
  • tornado:tornado-runtime 1.1.1-dev
  • junit:junit 4.13.2 test