cloud_image_segmentation

LWIR cloud image segmentation transfer learing

https://github.com/dominikgithub/cloud_image_segmentation

Science Score: 44.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (8.7%) to scientific vocabulary

Keywords

image-processing machine-learning pytorch segmentation-models tensorflow
Last synced: 6 months ago · JSON representation ·

Repository

LWIR cloud image segmentation transfer learing

Basic Info
  • Host: GitHub
  • Owner: DominikGithub
  • Language: Python
  • Default Branch: main
  • Homepage:
  • Size: 1.49 MB
Statistics
  • Stars: 0
  • Watchers: 0
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Topics
image-processing machine-learning pytorch segmentation-models tensorflow
Created 9 months ago · Last pushed 9 months ago
Metadata Files
Readme Citation

README.md

LWIR cloud image segmentation

Segment clouds in satellite infrared single channel images.

Download report (.pdf)

Approach

Supervised training of a model to learn the segmentation mask as a target labels (Y) from the satellite images (X).

Data set

Pairs of IR (single channel) images and binary masks for supervised learning.

  • Image/mask size: 1024x1024x1
  • Approx. 1000 samples

Data preprocessing

  • TIFF image format
  • Adaption to multi channel base model, by replicating gray scale input image to 3 channels
  • Augmentations (rotation, flip, noise, cropping)

IR color mapping IR error sample intensity historgram

Models

Transfer learning for image semantic segmentation tasks

(CNN) VGG19

Location: /tensorflow_vgg/

(static preprocessed TFRecord dataset, no augmentation)

VGG19 setup VGG19 results

  • Flat (one step) upsampling decoder
  • Deeper decoder designs increase training challenge significantly

(ViT) Segformer

Location: /pytorch_segformer/

segformer setup segformer results

  • Two step upsampling decoder

Training

f-scores

Owner

  • Name: Dominik Irimi
  • Login: DominikGithub
  • Kind: user
  • Location: Munich

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
  - family-names: Irimi
    given-names: Dominik
    #orcid: https://orcid.org/1234
title: "Cloud image segmentation"
version: 2.0.4
#identifiers:
#  - type: doi
#    value: 10.5281/zenodo.1234
date-released: 2025-06-07

GitHub Events

Total
  • Push event: 1
Last Year
  • Push event: 1

Dependencies

tensorflow_vgg/poetry.lock pypi
  • absl-py 2.3.0
  • astunparse 1.6.3
  • certifi 2025.4.26
  • charset-normalizer 3.4.2
  • colorama 0.4.6
  • flatbuffers 25.2.10
  • gast 0.6.0
  • glob2 0.7
  • google-pasta 0.2.0
  • grpcio 1.71.0
  • h5py 3.13.0
  • idna 3.10
  • joblib 1.5.1
  • keras 3.10.0
  • libclang 18.1.1
  • markdown 3.8
  • markdown-it-py 3.0.0
  • markupsafe 3.0.2
  • mdurl 0.1.2
  • ml-dtypes 0.5.1
  • namex 0.1.0
  • narwhals 1.41.0
  • numpy 2.1.3
  • opt-einsum 3.4.0
  • optree 0.16.0
  • packaging 25.0
  • pandas 2.2.3
  • pillow 11.2.1
  • plotly 6.1.2
  • protobuf 5.29.5
  • pygments 2.19.1
  • python-dateutil 2.9.0.post0
  • pytz 2025.2
  • requests 2.32.3
  • rich 14.0.0
  • scikit-learn 1.6.1
  • scipy 1.15.3
  • setuptools 80.9.0
  • six 1.17.0
  • tensorboard 2.19.0
  • tensorboard-data-server 0.7.2
  • tensorflow 2.19.0
  • termcolor 3.1.0
  • threadpoolctl 3.6.0
  • tqdm 4.67.1
  • typing-extensions 4.13.2
  • tzdata 2025.2
  • urllib3 2.4.0
  • werkzeug 3.1.3
  • wheel 0.45.1
  • wrapt 1.17.2
tensorflow_vgg/pyproject.toml pypi
  • glob2 (>=0.7,<0.8)
  • pandas (>=2.2.3,<3.0.0)
  • pillow (>=11.2.1,<12.0.0)
  • plotly (>=6.1.2,<7.0.0)
  • scikit-learn (>=1.6.1,<2.0.0)
  • tensorflow (>=2.19.0,<3.0.0)
  • tqdm (>=4.67.1,<5.0.0)
torch_segformer/poetry.lock pypi
  • 117 dependencies
torch_segformer/pyproject.toml pypi
  • albumentations (>=2.0.8,<3.0.0)
  • glob2 (>=0.7,<0.8)
  • mlflow (>=2.22.0,<3.0.0)
  • numpy (>=2.2.6,<3.0.0)
  • pandas (>=2.2.3,<3.0.0)
  • plotly (>=6.1.2,<7.0.0)
  • torch (>=2.7.0,<3.0.0)
  • transformers (>=4.52.4,<5.0.0)
torch_segformer/requirements.txt pypi
  • Deprecated ==1.2.18
  • Flask ==3.1.1
  • GitPython ==3.1.44
  • Jinja2 ==3.1.6
  • Mako ==1.3.10
  • Markdown ==3.8
  • MarkupSafe ==3.0.2
  • PyGObject ==3.42.1
  • PyJWT ==2.3.0
  • PyYAML ==6.0.2
  • Pygments ==2.19.1
  • SQLAlchemy ==2.0.41
  • SecretStorage ==3.3.1
  • Send2Trash ==1.8.3
  • Werkzeug ==3.1.3
  • accelerate ==1.7.0
  • albucore ==0.0.24
  • albumentations ==2.0.8
  • alembic ==1.16.1
  • annotated-types ==0.7.0
  • anyio ==4.9.0
  • argon2-cffi ==23.1.0
  • argon2-cffi-bindings ==21.2.0
  • arrow ==1.3.0
  • asttokens ==3.0.0
  • async-lru ==2.0.5
  • attrs ==25.3.0
  • babel ==2.17.0
  • beautifulsoup4 ==4.13.3
  • bleach ==6.2.0
  • blinker ==1.9.0
  • cachetools ==5.5.2
  • certifi ==2025.4.26
  • cffi ==1.17.1
  • charset-normalizer ==3.4.2
  • click ==8.2.1
  • cloudpickle ==3.1.1
  • comm ==0.2.2
  • contourpy ==1.3.2
  • cryptography ==3.4.8
  • cycler ==0.12.1
  • databricks-sdk ==0.55.0
  • dbus-python ==1.2.18
  • debugpy ==1.8.13
  • decorator ==5.2.1
  • defusedxml ==0.7.1
  • distro ==1.7.0
  • docker ==7.1.0
  • executing ==2.2.0
  • fastapi ==0.115.12
  • fastjsonschema ==2.21.1
  • filelock ==3.16.1
  • fonttools ==4.58.1
  • fqdn ==1.5.1
  • fsspec ==2024.10.0
  • gitdb ==4.0.12
  • glob2 ==0.7
  • google-auth ==2.40.2
  • graphene ==3.4.3
  • graphql-core ==3.2.6
  • graphql-relay ==3.2.0
  • greenlet ==3.2.2
  • gunicorn ==23.0.0
  • h11 ==0.16.0
  • hf-xet ==1.1.2
  • httpcore ==1.0.7
  • httplib2 ==0.20.2
  • httpx ==0.28.1
  • huggingface-hub ==0.32.3
  • idna ==3.10
  • importlib_metadata ==8.6.1
  • ipykernel ==6.29.5
  • ipython ==9.0.2
  • ipython_pygments_lexers ==1.1.1
  • ipywidgets ==8.1.5
  • isoduration ==20.11.0
  • itsdangerous ==2.2.0
  • jedi ==0.19.2
  • jeepney ==0.7.1
  • joblib ==1.5.1
  • json5 ==0.10.0
  • jsonpointer ==3.0.0
  • jsonschema ==4.23.0
  • jsonschema-specifications ==2024.10.1
  • jupyter-archive ==3.4.0
  • jupyter-events ==0.12.0
  • jupyter-lsp ==2.2.5
  • jupyter_client ==8.6.3
  • jupyter_core ==5.7.2
  • jupyter_server ==2.15.0
  • jupyter_server_terminals ==0.5.3
  • jupyterlab ==4.3.6
  • jupyterlab_pygments ==0.3.0
  • jupyterlab_server ==2.27.3
  • jupyterlab_widgets ==3.0.13
  • kaleido ==0.2.1
  • keyring ==23.5.0
  • kiwisolver ==1.4.8
  • launchpadlib ==1.10.16
  • lazr.restfulclient ==0.14.4
  • lazr.uri ==1.0.6
  • matplotlib ==3.10.3
  • matplotlib-inline ==0.1.7
  • mistune ==3.1.3
  • mlflow ==2.22.0
  • mlflow-skinny ==2.22.0
  • more-itertools ==8.10.0
  • mpmath ==1.3.0
  • narwhals ==1.41.0
  • nbclient ==0.10.2
  • nbconvert ==7.16.6
  • nbformat ==5.10.4
  • nest-asyncio ==1.6.0
  • networkx ==3.4.2
  • notebook ==7.3.3
  • notebook_shim ==0.2.4
  • numpy ==2.2.6
  • nvidia-cublas-cu12 ==12.4.5.8
  • nvidia-cuda-cupti-cu12 ==12.4.127
  • nvidia-cuda-nvrtc-cu12 ==12.4.127
  • nvidia-cuda-runtime-cu12 ==12.4.127
  • nvidia-cudnn-cu12 ==9.1.0.70
  • nvidia-cufft-cu12 ==11.2.1.3
  • nvidia-cufile-cu12 ==1.13.0.11
  • nvidia-curand-cu12 ==10.3.5.147
  • nvidia-cusolver-cu12 ==11.6.1.9
  • nvidia-cusparse-cu12 ==12.3.1.170
  • nvidia-cusparselt-cu12 ==0.6.2
  • nvidia-nccl-cu12 ==2.21.5
  • nvidia-nvjitlink-cu12 ==12.4.127
  • nvidia-nvtx-cu12 ==12.4.127
  • oauthlib ==3.2.0
  • opencv-python-headless ==4.11.0.86
  • opentelemetry-api ==1.33.1
  • opentelemetry-sdk ==1.33.1
  • opentelemetry-semantic-conventions ==0.54b1
  • overrides ==7.7.0
  • packaging ==24.2
  • pandas ==2.2.3
  • pandocfilters ==1.5.1
  • parso ==0.8.4
  • pexpect ==4.9.0
  • pillow ==11.2.1
  • platformdirs ==4.3.7
  • plotly ==6.1.2
  • prometheus_client ==0.21.1
  • prompt_toolkit ==3.0.50
  • protobuf ==6.31.1
  • psutil ==7.0.0
  • ptyprocess ==0.7.0
  • pure_eval ==0.2.3
  • pyarrow ==19.0.1
  • pyasn1 ==0.6.1
  • pyasn1_modules ==0.4.2
  • pycparser ==2.22
  • pydantic ==2.11.5
  • pydantic_core ==2.33.2
  • pyparsing ==3.2.3
  • python-apt ==2.4.0
  • python-dateutil ==2.9.0.post0
  • python-json-logger ==3.3.0
  • pytorch-triton ==3.3.0
  • pytz ==2025.2
  • pyzmq ==26.3.0
  • referencing ==0.36.2
  • regex ==2024.11.6
  • requests ==2.32.3
  • rfc3339-validator ==0.1.4
  • rfc3986-validator ==0.1.1
  • rpds-py ==0.23.1
  • rsa ==4.9.1
  • safetensors ==0.5.3
  • scikit-learn ==1.6.1
  • scipy ==1.15.3
  • simsimd ==6.4.7
  • six ==1.17.0
  • smmap ==5.0.2
  • sniffio ==1.3.1
  • soupsieve ==2.6
  • sqlparse ==0.5.3
  • stack-data ==0.6.3
  • starlette ==0.46.2
  • stringzilla ==3.12.5
  • sympy ==1.13.1
  • terminado ==0.18.1
  • threadpoolctl ==3.6.0
  • tinycss2 ==1.4.0
  • tokenizers ==0.21.1
  • torch ==2.6.0
  • torchaudio ==2.6.0.dev20250319
  • torchvision ==0.21.0
  • tornado ==6.4.2
  • tqdm ==4.67.1
  • traitlets ==5.14.3
  • transformers ==4.52.4
  • triton ==3.2.0
  • types-python-dateutil ==2.9.0.20241206
  • typing-inspection ==0.4.1
  • typing_extensions ==4.13.2
  • tzdata ==2025.2
  • uri-template ==1.3.0
  • urllib3 ==2.4.0
  • uvicorn ==0.34.3
  • wadllib ==1.3.6
  • wcwidth ==0.2.13
  • webcolors ==24.11.1
  • webencodings ==0.5.1
  • websocket-client ==1.8.0
  • widgetsnbextension ==4.0.13
  • wrapt ==1.17.2
  • zipp ==3.22.0
torch_segformer/runpod_requirements.txt pypi
  • albumentations *
  • glob2 *
  • opencv-python *
  • pipinstall--upgradekaleido *
  • pipinstall-Umlflow *
  • plotly *
  • scikit-learn *
  • torchvision *
  • transformers *