metatdenovo
Assembly and annotation of metatranscriptomic or metagenomic data for prokaryotic, eukaryotic and viruses.
Science Score: 57.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 10 DOI reference(s) in README -
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (9.4%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
Assembly and annotation of metatranscriptomic or metagenomic data for prokaryotic, eukaryotic and viruses.
Basic Info
- Host: GitHub
- Owner: nf-core
- License: mit
- Language: Nextflow
- Default Branch: master
- Homepage: https://nf-co.re/metatdenovo
- Size: 103 MB
Statistics
- Stars: 33
- Watchers: 166
- Forks: 17
- Open Issues: 8
- Releases: 6
Topics
Metadata Files
README.md
Introduction
nf-core/metatdenovo is a bioinformatics best-practice analysis pipeline for assembly and annotation of metatranscriptomic and metagenomic data from prokaryotes, eukaryotes or viruses.
On release, automated continuous integration tests run the pipeline on a full-sized dataset on the AWS cloud infrastructure. This ensures that the pipeline runs on AWS, has sensible resource allocation defaults set to run on real-world datasets, and permits the persistent storage of results to benchmark between pipeline releases and other analysis sources. The results obtained from the full-sized test can be viewed on the nf-core website.
Usage

- Read QC (
FastQC) - Present QC for raw reads (
MultiQC) - Quality trimming and adapter removal for raw reads (
Trim Galore!) - Optional: Filter sequences with
BBduk - Optional: Normalize the sequencing depth with
BBnorm - Merge trimmed, pair-end reads (
Seqtk) - Choice of de novo assembly programs:
- Choice of orf caller:
TransDecodersuggested for eukaryotes; only ORFsProkkasuggested for prokaryotes; ORFs and other features plus functional annotationProdigalsuggested for Prokaryotes; only ORFs
- Quantification of genes identified in assemblies:
- Generate index of assembly (
BBmap index) - Mapping cleaned reads to the assembly for quantification (
BBmap) - Get raw counts per each gene present in the assembly (
Featurecounts) -> TSV table with collected featurecounts output
- Generate index of assembly (
- Functional annotation:
Prokkafeature identification and annotation for prokaryoteseggNOG-mapperKofamScanHMMERsearch ORFs with a set of HMM profiles, and rank results
- Taxonomic annotation:
- Summary statistics.
Usage
[!NOTE] If you are new to Nextflow and nf-core, please refer to this page on how to set-up Nextflow. Make sure to test your setup with
-profile testbefore running the workflow on actual data.
First, prepare a samplesheet with your input data that looks as follows:
samplesheet.csv:
sample,fastq_1,fastq_2
sample1,./data/S1_R1_001.fastq.gz,./data/S1_R2_001.fastq.gz
sample2,./data/S2_fw.fastq.gz,./data/S2_rv.fastq.gz
sample3,./S4x.fastq.gz,./S4y.fastq.gz
sample3,./a.fastq.gz,./b.fastq.gz
Each row represents a fastq file (single-end) or a pair of fastq files (paired-end).
The fastq files need to end with .fq or .fastq, followed by .gz if gzipped.
Read files from multiple rows with the same sample name will be concatenated and treated as a single sample.
A mix of single-end and paired-end files is allowed, but do not mix single-end and paired-end for the same sample name.
Now, you can run the pipeline using:
bash
nextflow run nf-core/metatdenovo \
-profile <docker/singularity/.../institute> \
--input samplesheet.csv \
--outdir <OUTDIR>
[!WARNING] Please provide pipeline parameters via the CLI or Nextflow
-params-fileoption. Custom config files including those provided by the-cNextflow option can be used to provide any configuration except for parameters; see docs.
For more details and further functionality, please refer to the usage documentation and the parameter documentation.
Pipeline output
To see the results of an example test run with a full size dataset refer to the results tab on the nf-core website pipeline page. For more details about the output files and reports, please refer to the output documentation.
[!NOTE] Tables in the
summary_tablesdirectory under the output directory are made especially for further analysis in tools like R or Python. Their formats are standardized and column names consistent between tables.
Credits
nf-core/metatdenovo was originally written by Danilo Di Leo (@danilodileo), Emelie Nilsson (@emnilsson) & Daniel Lundin (@erikrikarddaniel).
Contributions and Support
If you would like to contribute to this pipeline, please see the contributing guidelines.
For further information or help, don't hesitate to get in touch on the Slack #metatdenovo channel (you can join with this invite).
Citations
If you use nf-core/metatdenovo for your analysis, please cite it using the following doi: 10.5281/zenodo.10666590
An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md file.
You can cite the nf-core publication as follows:
The nf-core framework for community-curated bioinformatics pipelines.
Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.
Nat Biotechnol. 2020 Feb 13. doi: 10.1038/s41587-020-0439-x.
Owner
- Name: nf-core
- Login: nf-core
- Kind: organization
- Email: core@nf-co.re
- Website: http://nf-co.re
- Twitter: nf_core
- Repositories: 84
- Profile: https://github.com/nf-core
A community effort to collect a curated set of analysis pipelines built using Nextflow.
Citation (CITATIONS.md)
# nf-core/metatdenovo: Citations ## [nf-core](https://pubmed.ncbi.nlm.nih.gov/32055031/) > Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020 Mar;38(3):276-278. doi: 10.1038/s41587-020-0439-x. PubMed PMID: 32055031. ## [Nextflow](https://pubmed.ncbi.nlm.nih.gov/28398311/) > Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017 Apr 11;35(4):316-319. doi: 10.1038/nbt.3820. PubMed PMID: 28398311. ## Pipeline tools - [FastQC](https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) > Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. - [MultiQC](https://pubmed.ncbi.nlm.nih.gov/27312411/) > Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016 Oct 1;32(19):3047-8. doi: 10.1093/bioinformatics/btw354. Epub 2016 Jun 16. PubMed PMID: 27312411; PubMed Central PMCID: PMC5039924. - [Trim Galore!](https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) - [khmer](https://github.com/dib-lab/khmer) > Brown C, Howe A, Zhang Q, Pyrkosz , and Brom T. 2012. “A Reference-Free Algorithm for Computational Normalization of Shotgun Sequencing Data.” ArXiv:1203.4802 [q-Bio], May. arxiv.org/abs/1203.4802. > Crusoe M, Alameldin H, Awad S, Boucher E, Caldwell A, Cartwright R, Charbonneau A, et al. 2015. “The Khmer Software Package: Enabling Efficient Nucleotide Sequence Analysis.” F1000Research 4 (September): 900. doi.org/10.12688/f1000research.6924.1. > Qingpeng Z, Pell J, Canino-Koning R, Howe A, and Brown C. 2014. “These Are Not the K-Mers You Are Looking For: Efficient Online K-Mer Counting Using a Probabilistic Data Structure.” PLOS ONE 9 (7): e101271. doi.org/10.1371/journal.pone.0101271. - [Seqtk](https://github.com/lh3/seqtk) - [RNAspade](https://cab.spbu.ru/software/rnaspades/) > Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012 May;19(5):455-77. doi: 10.1089/cmb.2012.0021. > Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017 May;27(5):824-834. doi: 10.1101/gr.213959.116. Epub 2017 Mar 15. > Bushmanova E, Antipov D, Lapidus A, Prjibelski A, rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data GigaScience, 2019 > Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., & Korobeynikov, A. (2020). “Using SPAdes de novo assembler.” Current Protocols in Bioinformatics, 70, e102. doi: 10.1002/cpbi.102 > Antipov D, Raiko M, Lapidus A, Pevzner P, METAVIRALSPADES: assembly of viruses from metagenomic data, Bioinformatics, Volume 36, Issue 14, July 2020, Pages 4126–4129, https://doi.org/10.1093/bioinformatics/btaa490 - [Megahit](https://github.com/voutcn/megahit) > Li D, Liu C, Luo R, Sadakane K, and Lam T, (2015) MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, doi: 10.1093/bioinformatics/btv033 [PMID: 25609793]. > Li D, Luo R, Liu C, Leung C, Ting H, Sadakane K, Yamashita H and Lam T, 2016. MEGAHIT v1.0: A Fast and Scalable Metagenome Assembler driven by Advanced Methodologies and Community Practices. Methods. - [TransDecoder](https://github.com/TransDecoder/TransDecoder) - [Prokka](https://github.com/tseemann/prokka) > Seemann T Prokka: rapid prokaryotic genome annotation Bioinformatics 2014 Jul 15;30(14):2068-9. PMID:24642063 - [Prodigal](https://github.com/hyattpd/Prodigal) - [BBmap](https://sourceforge.net/projects/bbmap/) - [FeatureCounts](https://subread.sourceforge.net) > Liao Y, Smyth GK and Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Research, 47(8):e47, 2019 > Liao Y, Smyth GK and Shi W. featureCounts: an efficient general-purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7):923-30, 2014 > Liao Y, Smyth GK and Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Research, 41(10):e108, 2013 - [Eggnog](https://github.com/eggnogdb/eggnog-mapper) > Cantalapiedra C, Hernandez-Plaza A, Letunic I, Bork P, Huerta-Cepas J. > eggNOG-mapper v2: functional annotation, orthology assignments, and domain > prediction at the metagenomic scale 2021. > Molecular Biology and Evolution, msab293, https://doi.org/10.1093/molbev/msab293 > eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated > orthology resource based on 5090 organisms and 2502 viruses. Jaime > Huerta-Cepas, Damian Szklarczyk, Davide Heller, Ana Hernández-Plaza, Sofia > K Forslund, Helen Cook, Daniel R Mende, Ivica Letunic, Thomas Rattei, Lars > J Jensen, Christian von Mering, Peer Bork Nucleic Acids Res. 2019 Jan 8; > 47(Database issue): D309–D314. doi: 10.1093/nar/gky1085 - [Kofamscan](https://github.com/takaram/kofam_scan) - [HMMsearch](https://www.ebi.ac.uk/Tools/hmmer/search/hmmsearch) - [EUKulele](https://github.com/AlexanderLabWHOI/EUKulele) - [Diamond](https://github.com/bbuchfink/diamond) > Buchfink B, Xie C, and Huson D. 2015. “Fast and Sensitive Protein Alignment Using DIAMOND.” Nature Methods 12 (1): 59–60. https://doi.org/10.1038/nmeth.3176. - [TaxonKit](https://bioinf.shenwei.me/taxonkit/) > Wei S, Ren H. 2021. “TaxonKit: A Practical and Efficient NCBI Taxonomy Toolkit.” Journal of Genetics and Genomics, Special issue on Microbiome, 48 (9): 844–50. https://doi.org/10.1016/j.jgg.2021.03.006. - [CAT](https://github.com/dutilh/CAT) > von Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biology. 2019;20:217. - [transrate](https://hibberdlab.com/transrate/) > Smith-Unna R, Boursnell C, Patro R, Hibberd J, Kelly S. TransRate: reference free quality assessment of de-novo transcriptome assemblies (2016). Genome Research doi: [http://dx.doi.org/10.1101/gr.196469.115](http://dx.doi.org/10.1101/gr.196469.115) ## Software packaging/containerisation tools - [Anaconda](https://anaconda.com) > Anaconda Software Distribution. Computer software. Vers. 2-2.4.0. Anaconda, Nov. 2016. Web. - [Bioconda](https://pubmed.ncbi.nlm.nih.gov/29967506/) > Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J; Bioconda Team. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018 Jul;15(7):475-476. doi: 10.1038/s41592-018-0046-7. PubMed PMID: 29967506. - [BioContainers](https://pubmed.ncbi.nlm.nih.gov/28379341/) > da Veiga Leprevost F, Grüning B, Aflitos SA, Röst HL, Uszkoreit J, Barsnes H, Vaudel M, Moreno P, Gatto L, Weber J, Bai M, Jimenez RC, Sachsenberg T, Pfeuffer J, Alvarez RV, Griss J, Nesvizhskii AI, Perez-Riverol Y. BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics. 2017 Aug 15;33(16):2580-2582. doi: 10.1093/bioinformatics/btx192. PubMed PMID: 28379341; PubMed Central PMCID: PMC5870671. - [Docker](https://dl.acm.org/doi/10.5555/2600239.2600241) > Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux Journal, 2014(239), 2. doi: 10.5555/2600239.2600241. - [Singularity](https://pubmed.ncbi.nlm.nih.gov/28494014/) > Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLoS One. 2017 May 11;12(5):e0177459. doi: 10.1371/journal.pone.0177459. eCollection 2017. PubMed PMID: 28494014; PubMed Central PMCID: PMC5426675.
GitHub Events
Total
- Create event: 16
- Release event: 4
- Issues event: 34
- Watch event: 11
- Delete event: 11
- Issue comment event: 113
- Push event: 91
- Pull request review comment event: 70
- Pull request event: 121
- Pull request review event: 103
- Fork event: 3
Last Year
- Create event: 16
- Release event: 4
- Issues event: 34
- Watch event: 11
- Delete event: 11
- Issue comment event: 113
- Push event: 91
- Pull request review comment event: 70
- Pull request event: 121
- Pull request review event: 103
- Fork event: 3
Committers
Last synced: over 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| Danilo Di Leo | d****o@l****e | 413 |
| Danilo Di Leo | 7****o | 121 |
| Daniel Lundin | e****l@g****m | 76 |
| Emelie Nilsson | e****n@l****e | 43 |
| Daniel Lundin | m****s@g****m | 35 |
| Taylor Falk | t****k@a****m | 14 |
| Danilo Di Leo | 7****1 | 7 |
| tfalkarkea | 1****a | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 84
- Total pull requests: 160
- Average time to close issues: about 2 months
- Average time to close pull requests: 5 days
- Total issue authors: 12
- Total pull request authors: 8
- Average comments per issue: 1.51
- Average comments per pull request: 1.09
- Merged pull requests: 128
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 19
- Pull requests: 67
- Average time to close issues: 22 days
- Average time to close pull requests: 1 day
- Issue authors: 8
- Pull request authors: 6
- Average comments per issue: 0.74
- Average comments per pull request: 0.94
- Merged pull requests: 44
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- erikrikarddaniel (51)
- danilodileo (23)
- emnilsson (8)
- m3hdad (3)
- luciazifcakova (3)
- wresch (2)
- BenPonBiobrain (2)
- anhong11 (1)
- tfalkarkea (1)
- geweaa (1)
- petemeng (1)
- maxulysse (1)
- jen-reeve (1)
- adriaaula (1)
- edmundmiller (1)
Pull Request Authors
- danilodileo (114)
- erikrikarddaniel (65)
- nf-core-bot (17)
- tfalkarkea (3)
- m3hdad (2)
- herich0 (2)
- dslarm (1)
- emnilsson (1)
- maxulysse (1)
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- nf-core/tower-action master composite
- nf-core/tower-action master composite
- mshick/add-pr-comment v1 composite
- actions/checkout v2 composite
- actions/checkout v1 composite
- actions/setup-node v1 composite
- actions/setup-python v1 composite
- actions/upload-artifact v2 composite
- mshick/add-pr-comment v1 composite
- dawidd6/action-download-artifact v2 composite
- marocchino/sticky-pull-request-comment v2 composite
- actions/stale v7 composite
- actions/setup-python 0b93645e9fea7318ecaed2b359559ac225c90a2b composite
- eWaterCycle/setup-apptainer 4bb22c52d4f63406c49e94c804632975787312b3 composite
- jlumbroso/free-disk-space 54081f138730dfa15788a46383842cd2f914a1be composite
- nf-core/setup-nextflow v2 composite
- rzr/fediverse-action master composite
- zentered/bluesky-post-action 80dbe0a7697de18c15ad22f4619919ceb5ccf597 composite
- nf-core/setup-nf-test v1 composite
- actions/setup-python a26af69be951a213d495a4c3e4e4022e16d87065 composite
- conda-incubator/setup-miniconda 505e6394dae86d6a5c7fbb6e3fb8938e3e863830 composite
- eWaterCycle/setup-apptainer main composite
- nf-core/setup-nextflow v2 composite
- nf-core/setup-nf-test v1 composite
- actions/checkout 11bd71901bbe5b1630ceea73d27597364c9af683 composite
- actions/setup-python a26af69be951a213d495a4c3e4e4022e16d87065 composite
- peter-evans/create-or-update-comment 71345be0265236311c031f5c7866368bd1eff043 composite
- ./.github/actions/get-shards * composite
- ./.github/actions/nf-test * composite
- actions/checkout 11bd71901bbe5b1630ceea73d27597364c9af683 composite
- actions/checkout 11bd71901bbe5b1630ceea73d27597364c9af683 composite
- mshick/add-pr-comment b8f338c590a895d50bcbfa6c5859251edc8952fc composite
- nichmor/minimal-read-yaml 1f7205277e25e156e1f63815781db80a6d490b8f composite
- r-data.table 1.14.8.*
- r-dtplyr 1.3.1.*
- r-tidyverse 2.0.0.*
- r-data.table 1.14.8.*
- r-dtplyr 1.3.1.*
- r-tidyverse 2.0.0.*
- 2.1.10
- r-data.table 1.14.8.*
- r-dtplyr 1.3.1.*
- r-tidyverse 2.0.0.*
- r-data.table 1.14.8.*
- r-dtplyr 1.3.1.*
- r-tidyverse 2.0.0.*
- eggnog-mapper 2.1.9.*
- eggnog-mapper 2.1.9.*
- r-data.table 1.14.8.*
- r-dtplyr 1.3.1.*
- r-tidyverse 2.0.0.*
- r-data.table 1.14.8.*
- r-dtplyr 1.3.1.*
- r-tidyverse 2.0.0.*
- eukulele 2.0.5.*
- gzip 1.12.*
- gzip 1.11.*
- r-data.table 1.14.8.*
- r-dtplyr 1.3.1.*
- r-tidyverse 2.0.0.*
- wget 1.21.4.*
- kofamscan 1.3.0.*
- r-data.table 1.14.8.*
- r-dtplyr 1.3.1.*
- r-tidyverse 2.0.0.*
- r-data.table 1.14.8.*
- r-dtplyr 1.3.1.*
- r-tidyverse 2.0.0.*
- megahit 1.2.9.*
- pigz 2.6.*
- r-data.table 1.14.8.*
- r-dtplyr 1.3.1.*
- r-tidyverse 2.0.0.*
- r-data.table 1.14.8.*
- r-dtplyr 1.3.1.*
- r-tidyverse 2.0.0.*
- seqtk 1.4.*
- pigz 2.3.4.*
- r-data.table 1.14.8.*
- r-dtplyr 1.3.1.*
- r-tidyverse 2.0.0.*
- transdecoder 5.7.1.*
- transrate 1.0.3.*