AIgarMIC

AIgarMIC: a Python package for automated interpretation of agar dilution minimum inhibitory concentration assays - Published in JOSS (2024)

https://github.com/agerada/aigarmic

Science Score: 95.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 11 DOI reference(s) in README and JOSS metadata
  • Academic publication links
    Links to: joss.theoj.org
  • Committers with academic emails
    3 of 6 committers (50.0%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
    Published in Journal of Open Source Software

Scientific Fields

Mathematics Computer Science - 84% confidence
Artificial Intelligence and Machine Learning Computer Science - 73% confidence
Last synced: 4 months ago · JSON representation

Repository

AIgarMIC – machine-learning assisted agar dilution software

Basic Info
  • Host: GitHub
  • Owner: agerada
  • License: gpl-3.0
  • Language: Python
  • Default Branch: main
  • Homepage:
  • Size: 5.61 MB
Statistics
  • Stars: 2
  • Watchers: 2
  • Forks: 3
  • Open Issues: 1
  • Releases: 4
Created almost 2 years ago · Last pushed about 1 year ago
Metadata Files
Readme Contributing License Code of conduct

README.md

AIgarMIC

DOI

Introduction

AIgarMIC is a Python package and collection of commandline scripts designed to facilitate the automation of agar dilution minimum inhibitory concentration image interpretation.

AIgarMIC has the following features:

  • Automated image processing of agar dilution plates in the following format (note the use of an anchoring black grid to delineate colonies):

Example image 1

  • Flexible MIC calculation algorithm with ability to disregard inhibited growth
  • Quality assurance metrics to ensure MIC predictions
  • Pre-trained models and example datasets
  • Scripts to support custom model training

Documentation

The full documentation for AIgarMIC can be found at:

https://aigarmic.readthedocs.io/en/latest/

Installation

To install AIgarMIC, follow the instructions below:

https://aigarmic.readthedocs.io/en/latest/installation.html

Usage

To use AIgarMIC, follow one of the typical workflows described below:

https://aigarmic.readthedocs.io/en/latest/introduction.html#typical-workflows

Author information

The lead developer of AIgarMIC is Alessandro Gerada (https://github.com/agerada/ and https://agerada.github.io/), University of Liverpool, UK (alessandro.gerada@liverpool.ac.uk).

Cite

If you are using AIgarMIC in your research project, please cite:

@article{geradaAIgarMICPythonPackage2024,
  title = {{{AIgarMIC}}: A {{Python}} Package for Automated Interpretationof Agar Dilution Minimum Inhibitory Concentration Assays},
  shorttitle = {{{AIgarMIC}}},
  author = {Gerada, Alessandro and Harper, Nicholas and Howard, Alex and Hope, William},
  year = {2024},
  month = sep,
  journal = {Journal of Open Source Software},
  volume = {9},
  number = {101},
  pages = {6826},
  issn = {2475-9066},
  doi = {10.21105/joss.06826},
  urldate = {2024-10-07},
  copyright = {http://creativecommons.org/licenses/by/4.0/},
  file = {/Users/agerada/Library/Mobile Documents/com~apple~CloudDocs/Zotero/Journal Article/Gerada et al_2024_AIgarMIC.pdf}
}

To cite the validation data and developmental approach described in the AIgarMIC validation manuscript, please cite:

@article{geradaDeterminationMinimumInhibitory2024,
  title = {Determination of Minimum Inhibitory Concentrations Using Machine-Learning-Assisted Agar Dilution},
  author = {Gerada, Alessandro and Harper, Nicholas and Howard, Alex and Reza, Nada and Hope, William},
  editor = {Shier, Kileen L.},
  date = {2024-03-22},
  journaltitle = {Microbiology Spectrum},
  shortjournal = {Microbiol Spectr},
  pages = {e04209-23},
  issn = {2165-0497},
  doi = {10.1128/spectrum.04209-23},
  url = {https://journals.asm.org/doi/10.1128/spectrum.04209-23},
  urldate = {2024-04-02},
  langid = {english}
}

External links

The manuscript describing the validation of AIgarMIC can be found at: https://doi.org/10.1128/spectrum.04209-23. Optional asset data is available at: https://doi.org/10.17638/datacat.liverpool.ac.uk%2F2631.

Contributing

We welcome contributions to AIgarMIC. Please follow our contributing guidelines.

License

AIgarMIC is provided under the GNU General Public License v3.0. For more information, see the LICENSE file.

Owner

  • Name: Alessandro Gerada
  • Login: agerada
  • Kind: user

JOSS Publication

AIgarMIC: a Python package for automated interpretation of agar dilution minimum inhibitory concentration assays
Published
September 16, 2024
Volume 9, Issue 101, Page 6826
Authors
Alessandro Gerada ORCID
Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, United Kingdom, Department of Infection and Immunity, Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
Nicholas Harper ORCID
Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, United Kingdom
Alex Howard ORCID
Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, United Kingdom, Department of Infection and Immunity, Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
William Hope ORCID
Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, United Kingdom, Department of Infection and Immunity, Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
Editor
Antonia Mey ORCID
Tags
microbiology image analysis machine learning minimum inhibitory concentration bacteriology laboratory software

GitHub Events

Total
  • Create event: 1
Last Year
  • Create event: 1

Committers

Last synced: 5 months ago

All Time
  • Total Commits: 185
  • Total Committers: 6
  • Avg Commits per committer: 30.833
  • Development Distribution Score (DDS): 0.097
Past Year
  • Commits: 8
  • Committers: 2
  • Avg Commits per committer: 4.0
  • Development Distribution Score (DDS): 0.125
Top Committers
Name Email Commits
Alessandro Gerada 6****a 167
gchure g****e@g****m 7
Alessandro Gerada a****a@A****l 5
Yinzheng Zhong y****g@l****k 3
Gerada a****a@l****k 2
Toni Mey a****y@e****k 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 9
  • Total pull requests: 25
  • Average time to close issues: 13 days
  • Average time to close pull requests: about 2 hours
  • Total issue authors: 2
  • Total pull request authors: 4
  • Average comments per issue: 2.78
  • Average comments per pull request: 0.64
  • Merged pull requests: 25
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 3
  • Average time to close issues: N/A
  • Average time to close pull requests: about 8 hours
  • Issue authors: 0
  • Pull request authors: 2
  • Average comments per issue: 0
  • Average comments per pull request: 1.0
  • Merged pull requests: 3
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • agerada (7)
  • gchure (2)
Pull Request Authors
  • agerada (40)
  • gchure (2)
  • yinzheng-zhong (2)
  • ppxasjsm (2)
Top Labels
Issue Labels
Pull Request Labels

Dependencies

requirements.txt pypi
  • imutils ==0.5.4
  • matplotlib ==3.6.3
  • numpy ==1.24.1
  • opencv_python ==4.7.0.68
  • tensorflow ==2.11.0
  • tensorflow_macos ==2.11.0
pyproject.toml pypi
  • myst-nb ^1.0.0 develop
  • pytest-cov ^5.0.0 develop
  • sphinx-autoapi ^3.0.0 develop
  • sphinx-rtd-theme ^2.0.0 develop
  • imutils 0.5.4
  • matplotlib 3.6.3
  • numpy 1.26.4
  • opencv-python 4.9.0.80
  • pytest 8.1.1
  • python >=3.9,<3.11
  • scikit-learn 1.4.1.post1
  • tensorflow 2.11.0
  • tensorflow-macos 2.11.0
.github/workflows/draft-pdf.yml actions
  • actions/checkout v4 composite
  • actions/upload-artifact v1 composite
  • openjournals/openjournals-draft-action master composite
docs/source/requirements.txt pypi
  • Babel ==2.14.0
  • Jinja2 ==3.1.3
  • Markdown ==3.6
  • MarkupSafe ==2.1.5
  • PyYAML ==6.0.1
  • Pygments ==2.17.2
  • SQLAlchemy ==2.0.29
  • Sphinx ==7.2.6
  • Werkzeug ==3.0.1
  • absl-py ==2.1.0
  • alabaster ==0.7.16
  • anyascii ==0.3.2
  • appnope ==0.1.4
  • astroid ==3.1.0
  • asttokens ==2.4.1
  • astunparse ==1.6.3
  • attrs ==23.2.0
  • cachetools ==5.3.3
  • certifi ==2024.2.2
  • charset-normalizer ==3.3.2
  • click ==8.1.7
  • comm ==0.2.2
  • contourpy ==1.2.0
  • coverage ==7.4.4
  • cycler ==0.12.1
  • debugpy ==1.8.1
  • decorator ==5.1.1
  • dill ==0.3.8
  • docutils ==0.20.1
  • exceptiongroup ==1.2.0
  • executing ==2.0.1
  • fastjsonschema ==2.19.1
  • flatbuffers ==24.3.25
  • fonttools ==4.50.0
  • gast ==0.5.4
  • google-auth ==2.29.0
  • google-auth-oauthlib ==1.2.0
  • google-pasta ==0.2.0
  • grpcio ==1.62.1
  • h5py ==3.10.0
  • idna ==3.6
  • imagesize ==1.4.1
  • importlib_metadata ==7.1.0
  • importlib_resources ==6.4.0
  • imutils ==0.5.4
  • iniconfig ==2.0.0
  • ipykernel ==6.29.3
  • ipython ==8.18.1
  • isort ==5.13.2
  • jedi ==0.19.1
  • joblib ==1.3.2
  • jsonschema ==4.21.1
  • jsonschema-specifications ==2023.12.1
  • jupyter-cache ==1.0.0
  • jupyter_client ==8.6.1
  • jupyter_core ==5.7.2
  • keras ==2.15.0
  • kiwisolver ==1.4.5
  • libclang ==18.1.1
  • markdown-it-py ==3.0.0
  • matplotlib ==3.8.3
  • matplotlib-inline ==0.1.6
  • mccabe ==0.7.0
  • mdit-py-plugins ==0.4.0
  • mdurl ==0.1.2
  • ml-dtypes ==0.2.0
  • mypy-extensions ==1.0.0
  • myst-nb ==1.0.0
  • myst-parser ==2.0.0
  • nbclient ==0.10.0
  • nbformat ==5.10.3
  • nest-asyncio ==1.6.0
  • numpy ==1.26.4
  • oauthlib ==3.2.2
  • opencv-python ==4.9.0.80
  • opencv-python-headless ==4.9.0.80
  • opt-einsum ==3.3.0
  • packaging ==24.0
  • parso ==0.8.3
  • pexpect ==4.9.0
  • pillow ==10.2.0
  • pip-chill ==1.0.3
  • platformdirs ==4.2.0
  • pluggy ==1.4.0
  • prompt-toolkit ==3.0.43
  • protobuf ==4.25.3
  • psutil ==5.9.8
  • ptyprocess ==0.7.0
  • pure-eval ==0.2.2
  • pyasn1 ==0.5.1
  • pyasn1-modules ==0.3.0
  • pylint ==3.1.0
  • pyparsing ==3.1.2
  • pytest ==8.1.1
  • pytest-cov ==5.0.0
  • python-dateutil ==2.9.0.post0
  • pyzmq ==25.1.2
  • referencing ==0.34.0
  • requests ==2.31.0
  • requests-oauthlib ==2.0.0
  • rpds-py ==0.18.0
  • rsa ==4.9
  • scikit-learn ==1.4.1.post1
  • scipy ==1.12.0
  • six ==1.16.0
  • snowballstemmer ==2.2.0
  • sphinx-argparse ==0.4.0
  • sphinx-autoapi ==3.0.0
  • sphinx-rtd-theme ==2.0.0
  • sphinxcontrib-applehelp ==1.0.8
  • sphinxcontrib-devhelp ==1.0.6
  • sphinxcontrib-htmlhelp ==2.0.5
  • sphinxcontrib-jquery ==4.1
  • sphinxcontrib-jsmath ==1.0.1
  • sphinxcontrib-qthelp ==1.0.7
  • sphinxcontrib-serializinghtml ==1.1.10
  • stack-data ==0.6.3
  • tabulate ==0.9.0
  • tensorboard ==2.15.2
  • tensorboard-data-server ==0.7.2
  • tensorboard-plugin-wit ==1.8.1
  • tensorflow ==2.15.0
  • tensorflow-estimator ==2.15.0
  • tensorflow-io-gcs-filesystem ==0.36.0
  • tensorflow-macos ==2.15.0
  • termcolor ==2.4.0
  • threadpoolctl ==3.4.0
  • tomli ==2.0.1
  • tomlkit ==0.12.4
  • tornado ==6.4
  • traitlets ==5.14.2
  • typing_extensions ==4.10.0
  • urllib3 ==2.2.1
  • wcwidth ==0.2.13
  • wrapt ==1.14.1
  • zipp ==3.18.1
.github/workflows/pytest.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
environment.yaml pypi
  • absl-py ==1.4.0
  • astunparse ==1.6.3
  • cachetools ==5.3.0
  • certifi ==2022.12.7
  • charset-normalizer ==3.0.1
  • contourpy ==1.0.7
  • cycler ==0.11.0
  • docopt ==0.6.2
  • flatbuffers ==23.1.21
  • fonttools ==4.38.0
  • gast ==0.4.0
  • google-auth ==2.16.0
  • google-auth-oauthlib ==0.4.6
  • google-pasta ==0.2.0
  • grpcio ==1.51.1
  • h5py ==3.8.0
  • idna ==3.4
  • imutils ==0.5.4
  • keras ==2.11.0
  • kiwisolver ==1.4.4
  • libclang ==15.0.6.1
  • markdown ==3.4.1
  • matplotlib ==3.6.3
  • numpy ==1.24.1
  • oauthlib ==3.2.2
  • opencv-python ==4.7.0.68
  • opt-einsum ==3.3.0
  • pillow ==9.4.0
  • pip ==22.3.1
  • pipreqs ==0.4.11
  • protobuf ==3.19.6
  • pyasn1 ==0.4.8
  • pyasn1-modules ==0.2.8
  • pyparsing ==3.0.9
  • requests ==2.28.2
  • requests-oauthlib ==1.3.1
  • rsa ==4.9
  • tensorboard ==2.11.2
  • tensorboard-data-server ==0.6.1
  • tensorboard-plugin-wit ==1.8.1
  • tensorflow-estimator ==2.11.0
  • tensorflow-macos ==2.11.0
  • termcolor ==2.2.0
  • urllib3 ==1.26.14
  • werkzeug ==2.2.2
  • wrapt ==1.14.1
  • yarg ==0.1.9