Science Score: 64.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
✓DOI references
Found 5 DOI reference(s) in README -
✓Academic publication links
Links to: arxiv.org, acm.org -
✓Committers with academic emails
20 of 71 committers (28.2%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (17.0%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
Computational algebraic number theory
Basic Info
Statistics
- Stars: 269
- Watchers: 10
- Forks: 72
- Open Issues: 40
- Releases: 0
Topics
Metadata Files
README.md
Hecke
Builds
About
Hecke is a software package for algebraic number theory maintained by Claus Fieker and Tommy Hofmann. It is written in julia and is based on the computer algebra packages Nemo and AbstractAlgebra. Hecke is part of the OSCAR project and the development is supported by the Deutsche Forschungsgemeinschaft DFG within the Collaborative Research Center TRR 195.
- https://github.com/thofma/Hecke.jl (Source code)
- https://docs.hecke.thofma.com (Online documentation)
So far, Hecke provides the following features:
- Number fields (absolute, relative, simple and non-simple)
- Orders and ideals in number fields
- Class and unit group computations of orders
- Lattice enumeration
- Sparse linear algebra
- Class field theory
- Abelian groups
- Associative algebras
- Ideals and orders in (semisimple) associative algebras
- Locally free class groups of orders in semisimple algebras
- Quadratic and Hermitian forms and lattices
An overview of the functionality of Hecke (in connection with OSCAR) can be found in
"Number Theory", T. Hofmann & C. Fieker, in: The Computer Algebra System OSCAR. Springer Cham, 2025, 81-105.
available here or from the arXiv.
Installation
To use Hecke, a julia version of 1.0 is necessary (the latest stable julia version will do). Please see https://julialang.org/downloads/ for instructions on how to obtain julia for your system. Once a suitable julia version is installed, use the following steps at the julia prompt to install Hecke:
julia
julia> using Pkg
julia> Pkg.add("Hecke")
Citing Hecke
If your research depends on computations done with Hecke, please consider giving us a formal citation:
- Claus Fieker, William Hart, Tommy Hofmann and Fredrik Johansson, Nemo/Hecke: Computer Algebra and Number Theory Packages for the Julia Programming Language. In: Proceedings of ISSAC '17, pages 157–164, New York, NY, USA, 2017. ACM.
bib
@inproceedings{nemo,
author = {Fieker, Claus and Hart, William and Hofmann, Tommy and Johansson, Fredrik},
title = {Nemo/Hecke: Computer Algebra and Number Theory Packages for the Julia Programming Language},
booktitle = {Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation},
series = {ISSAC '17},
year = {2017},
pages = {157--164},
numpages = {8},
url = {https://doi.acm.org/10.1145/3087604.3087611},
doi = {10.1145/3087604.3087611},
publisher = {ACM},
address = {New York, NY, USA},
}
Quick start
Here is a quick example of using Hecke:
``` julia> using Hecke
| | | | | | | Software package for
| || | ___ __| | __ | algorithmic algebraic number theory
| __ |/ _ \/ | |/ / _ \ |
| | | | __/ (| < / | Manual: https://thofma.github.io/Hecke.jl
|| ||_|_|_|__| | Version 0.34.6
julia> Qx, x = polynomial_ring(QQ, "x");
julia> f = x^3 + 2;
julia> K, a = number_field(f, "a");
julia> O = maximal_order(K);
julia> O Maximal order of number field of degree 3 over QQ with basis [1, a, a^2] ```
Documentation
Owner
- Name: Tommy Hofmann
- Login: thofma
- Kind: user
- Website: https://www.thofma.com
- Repositories: 6
- Profile: https://github.com/thofma
Citation (CITATION.bib)
@inproceedings{Hecke.jl-2017,
author = {Fieker, Claus and Hart, William and Hofmann, Tommy and Johansson, Fredrik},
title = {Nemo/Hecke: Computer Algebra and Number Theory Packages for the Julia Programming Language},
booktitle = {Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation},
series = {ISSAC '17},
year = {2017},
pages = {157--164},
numpages = {8},
url = {https://doi.acm.org/10.1145/3087604.3087611},
doi = {10.1145/3087604.3087611},
publisher = {ACM},
address = {New York, NY, USA},
}
Committers
Last synced: 10 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Tommy Hofmann | t****a@g****m | 2,309 |
| Claus Fieker | f****r@m****e | 1,638 |
| CarloSircana | s****a@m****e | 940 |
| Johannes Schmitt | j****t@p****u | 376 |
| Max Horn | m****x@q****e | 173 |
| Stevell Muller | 7****M | 105 |
| simonbrandhorst | 5****t | 96 |
| Lars Göttgens | l****s@r****e | 91 |
| Hpetri | 5****e | 46 |
| Alexander Mattes | a****8@g****m | 28 |
| Claus Fieker | c****s@m****u | 22 |
| Markus Kurtz | k****z@m****e | 17 |
| FiroozehAga | 4****a | 16 |
| wbhart | g****t@g****m | 15 |
| Erik Paemurru | 1****u | 14 |
| JHanselman | h****j@h****m | 13 |
| Rafael Fourquet | f****l@g****m | 10 |
| Thomas Breuer | s****m@m****e | 9 |
| Alexander Dinges | a****7@g****m | 8 |
| Simon Brandhorst | s****t@w****e | 6 |
| Daniel Schultz | t****2@g****m | 6 |
| Albin Ahlbäck | a****k@g****m | 6 |
| Aslam Ali | 5****1 | 5 |
| Tobias Braun | T****2@r****e | 5 |
| antonydellavecchia | a****a@g****m | 5 |
| Benjamin Lorenz | b****z | 4 |
| Alex J Best | a****t@g****m | 4 |
| Martin Bies | H****d | 3 |
| Debian Live user | u****r@l****n | 3 |
| Berenike Dieterle | 9****0 | 3 |
| and 41 more... | ||
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 123
- Total pull requests: 1,274
- Average time to close issues: 5 months
- Average time to close pull requests: 6 days
- Total issue authors: 29
- Total pull request authors: 35
- Average comments per issue: 3.58
- Average comments per pull request: 1.68
- Merged pull requests: 1,096
- Bot issues: 0
- Bot pull requests: 4
Past Year
- Issues: 42
- Pull requests: 570
- Average time to close issues: 7 days
- Average time to close pull requests: 3 days
- Issue authors: 15
- Pull request authors: 24
- Average comments per issue: 0.81
- Average comments per pull request: 1.53
- Merged pull requests: 474
- Bot issues: 0
- Bot pull requests: 4
Top Authors
Issue Authors
- thofma (29)
- lgoettgens (16)
- fingolfin (13)
- StevellM (10)
- simonbrandhorst (10)
- fagu (6)
- mgkurtz (5)
- SoongNoonien (4)
- ThomasBreuer (4)
- paemurru (2)
- BD-00 (2)
- mkirschm (2)
- alexjbest (2)
- timovelten (2)
- joschmitt (2)
Pull Request Authors
- thofma (570)
- fingolfin (165)
- lgoettgens (158)
- fieker (92)
- StevellM (86)
- joschmitt (67)
- paemurru (30)
- simonbrandhorst (21)
- BD-00 (11)
- SirToby25 (10)
- mgkurtz (10)
- benlorenz (8)
- SoongNoonien (8)
- ThomasBreuer (8)
- wfsteiner (6)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- julia 299 total
- Total dependent packages: 5
- Total dependent repositories: 0
- Total versions: 232
juliahub.com: Hecke
Computational algebraic number theory
- Documentation: https://docs.juliahub.com/General/Hecke/stable/
- License: other
-
Latest release: 0.36.0
published 8 months ago
Rankings
Dependencies
- python-markdown-math *
- actions/cache v3 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- julia-actions/julia-buildpkg latest composite
- julia-actions/julia-docdeploy latest composite
- julia-actions/julia-runtest latest composite
- julia-actions/setup-julia v1 composite
- actions/cache v3 composite
- actions/checkout v3 composite
- codecov/codecov-action v3 composite
- julia-actions/julia-buildpkg latest composite
- julia-actions/julia-processcoverage v1 composite
- julia-actions/julia-runtest latest composite
- julia-actions/setup-julia v1 composite
- JuliaRegistries/TagBot v1 composite
- actions/checkout v3 composite
- julia-actions/setup-julia v1 composite
- actions/checkout v3 composite
- julia-actions/julia-buildpkg v1 composite
- julia-actions/julia-invalidations v1 composite
- julia-actions/setup-julia v1 composite