matplotx

:bar_chart: More styles and useful extensions for Matplotlib

https://github.com/nschloe/matplotx

Science Score: 67.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 3 DOI reference(s) in README
  • Academic publication links
    Links to: zenodo.org
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (12.6%) to scientific vocabulary

Keywords

color-scheme dracula gruvbox matplotlib matplotlib-style-sheets python solarized
Last synced: 4 months ago · JSON representation ·

Repository

:bar_chart: More styles and useful extensions for Matplotlib

Basic Info
  • Host: GitHub
  • Owner: nschloe
  • License: mit
  • Language: Python
  • Default Branch: main
  • Homepage:
  • Size: 966 KB
Statistics
  • Stars: 821
  • Watchers: 5
  • Forks: 32
  • Open Issues: 10
  • Releases: 25
Topics
color-scheme dracula gruvbox matplotlib matplotlib-style-sheets python solarized
Created about 4 years ago · Last pushed almost 3 years ago
Metadata Files
Readme Contributing License Code of conduct Citation

README.md

matplotx

Some useful extensions for Matplotlib.

PyPi Version Anaconda Cloud PyPI pyversions DOI GitHub stars Downloads

gh-actions codecov Code style: black

This package includes some useful or beautiful extensions to Matplotlib. Most of those features could be in Matplotlib itself, but I haven't had time to PR yet. If you're eager, let me know and I'll support the effort.

Install with

sh pip install matplotx[all]

and use in Python with

python import matplotx

See below for what matplotx can do.

Clean line plots (dufte)

matplotlib matplotx.styles.dufte, matplotx.ylabeltop, matplotx.linelabels matplotx.styles.duftify(matplotx.styles.dracula)

The middle plot is created with

```python import matplotlib.pyplot as plt import matplotx import numpy as np

create data

rng = np.random.default_rng(0) offsets = [1.0, 1.50, 1.60] labels = ["no balancing", "CRV-27", "CRV-27*"] x0 = np.linspace(0.0, 3.0, 100) y = [offset * x0 / (x0 + 1) + 0.1 * rng.random(len(x0)) for offset in offsets]

plot

with plt.style.context(matplotx.styles.dufte): for yy, label in zip(y, labels): plt.plot(x0, yy, label=label) plt.xlabel("distance [m]") matplotx.ylabeltop("voltage [V]") # move ylabel to the top, rotate matplotx.linelabels() # line labels to the right plt.show() ```

The three matplotx ingredients are:

  • matplotx.styles.dufte: A minimalistic style
  • matplotx.ylabel_top: Rotate and move the the y-label
  • matplotx.line_labels: Show line labels to the right, with the line color

You can also "duftify" any other style (see below) with

python matplotx.styles.duftify(matplotx.styles.dracula)

Further reading and other styles:

Clean bar plots

matplotlib dufte dufte with matplotx.showbarvalues()

The right plot is created with

```python import matplotlib.pyplot as plt import matplotx

labels = ["Australia", "Brazil", "China", "Germany", "Mexico", "United\nStates"] vals = [21.65, 24.5, 6.95, 8.40, 21.00, 8.55] xpos = range(len(vals))

with plt.style.context(matplotx.styles.duftebar): plt.bar(xpos, vals) plt.xticks(xpos, labels) matplotx.showbar_values("{:.2f}") plt.title("average temperature [°C]") plt.show() ```

The two matplotx ingredients are:

  • matplotx.styles.dufte_bar: A minimalistic style for bar plots
  • matplotx.show_bar_values: Show bar values directly at the bars

Extra styles

matplotx contains numerous extra color schemes, e.g., Dracula, Nord, gruvbox, and Solarized, the revised Tableau colors.

```python import matplotlib.pyplot as plt import matplotx

use everywhere:

plt.style.use(matplotx.styles.dracula)

use with context:

with plt.style.context(matplotx.styles.dracula): pass ```

| | | :----------------------------------------------------------------------------------: | | | | | | |

Many more styles here... | | | :-----------------------------------------------------------------------------------: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

Other styles:

Smooth contours

| | | | :--------------------------------------------------------------------------: | :-------------------------------------------------------------------------------: | | plt.contourf | matplotx.contours() |

Sometimes, the sharp edges of contour[f] plots don't accurately represent the smoothness of the function in question. Smooth contours, contours(), serves as a drop-in replacement.

```python import matplotlib.pyplot as plt import matplotx

def rosenbrock(x): return (1.0 - x[0]) ** 2 + 100.0 * (x[1] - x[0] ** 2) ** 2

im = matplotx.contours( rosenbrock, (-3.0, 3.0, 200), (-1.0, 3.0, 200), logscaling=True, cmap="viridis", outline="white", ) plt.gca().setaspect("equal") plt.colorbar(im) plt.show() ```

Contour plots for functions with discontinuities

| | | | :-------------------------------------------------------------------------: | :------------------------------------------------------------------------------: | | plt.contour | matplotx.contour(max_jump=1.0) |

Matplotlib has problems with contour plots of functions that have discontinuities. The software has no way to tell discontinuities and very sharp, but continuous cliffs apart, and contour lines will be drawn along the discontinuity.

matplotx improves upon this by adding the parameter max_jump. If the difference between two function values in the grid is larger than max_jump, a discontinuity is assumed and no line is drawn. Similarly, min_jump can be used to highlight the discontinuity.

As an example, take the function imag(log(Z)) for complex values Z. Matplotlib's contour lines along the negative real axis are wrong.

```python import matplotlib.pyplot as plt import numpy as np

import matplotx

x = np.linspace(-2.0, 2.0, 100) y = np.linspace(-2.0, 2.0, 100)

X, Y = np.meshgrid(x, y) Z = X + 1j * Y

vals = np.imag(np.log(Z))

plt.contour(X, Y, vals, levels=[-2.0, -1.0, 0.0, 1.0, 2.0]) # draws wrong lines

matplotx.contour(X, Y, vals, levels=[-2.0, -1.0, 0.0, 1.0, 2.0], maxjump=1.0) matplotx.discontour(X, Y, vals, minjump=1.0, linestyle=":", color="r")

plt.gca().set_aspect("equal") plt.show() ```

Relevant discussions:

spy plots (betterspy)

Show sparsity patterns of sparse matrices or write them to image files.

Example:

```python import matplotx from scipy import sparse

A = sparse.rand(20, 20, density=0.1)

show the matrix

plt = matplotx.spy( A, # borderwidth=2, # bordercolor="red", # colormap="viridis" ) plt.show()

or save it as png

matplotx.spy(A, filename="out.png") ```

| | | | :----------------------------------------------------------: | :------------------------------------------------------------: | | no colormap | viridis |

There is a command-line tool that can be used to show matrix-market or Harwell-Boeing files:

matplotx spy msc00726.mtx [out.png]

See matplotx spy -h for all options.

License

This software is published under the MIT license.

Owner

  • Name: Nico Schlömer
  • Login: nschloe
  • Kind: user
  • Location: Berlin, Germany
  • Company: Monday Tech

Mathematics, numerical analysis, scientific computing, Python. Always interested in new problems.

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Schlömer"
  given-names: "Nico"
  orcid: "https://orcid.org/0000-0001-5228-0946"
title: "matplotx: Extensions for Matplotlib"
doi: 10.5281/zenodo.5985269
url: https://github.com/nschloe/matplotx
license: MIT

GitHub Events

Total
  • Watch event: 38
Last Year
  • Watch event: 38

Committers

Last synced: 8 months ago

All Time
  • Total Commits: 135
  • Total Committers: 2
  • Avg Commits per committer: 67.5
  • Development Distribution Score (DDS): 0.052
Past Year
  • Commits: 0
  • Committers: 0
  • Avg Commits per committer: 0.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
Nico Schlömer n****r@g****m 128
RemDelaporteMathurin r****n@g****m 7

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 14
  • Total pull requests: 40
  • Average time to close issues: 5 days
  • Average time to close pull requests: 2 days
  • Total issue authors: 9
  • Total pull request authors: 4
  • Average comments per issue: 1.0
  • Average comments per pull request: 0.15
  • Merged pull requests: 37
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 1
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 1
  • Pull request authors: 0
  • Average comments per issue: 0.0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • RemDelaporteMathurin (6)
  • joooeey (1)
  • adeak (1)
  • floringogianu (1)
  • ProV1denCEX (1)
  • markmbaum (1)
  • mitchellvanzuijlen (1)
  • nschloe (1)
  • exc4l (1)
Pull Request Authors
  • nschloe (36)
  • RemDelaporteMathurin (2)
  • mitchellvanzuijlen (1)
  • Philistino (1)
Top Labels
Issue Labels
Pull Request Labels

Packages

  • Total packages: 3
  • Total downloads:
    • pypi 27,586 last-month
  • Total dependent packages: 10
    (may contain duplicates)
  • Total dependent repositories: 8
    (may contain duplicates)
  • Total versions: 55
  • Total maintainers: 1
pypi.org: matplotx

Useful styles and extensions for Matplotlib

  • Documentation: https://matplotx.readthedocs.io/
  • License: The MIT License (MIT) Copyright (c) 2021-2022 Nico Schlömer Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  • Latest release: 0.3.10
    published over 3 years ago
  • Versions: 18
  • Dependent Packages: 8
  • Dependent Repositories: 7
  • Downloads: 27,586 Last month
Rankings
Dependent packages count: 1.3%
Stargazers count: 2.4%
Downloads: 3.2%
Average: 3.8%
Dependent repos count: 5.5%
Forks count: 6.7%
Maintainers (1)
Funding
  • https://github.com/sponsors/nschloe
Last synced: 4 months ago
proxy.golang.org: github.com/nschloe/matplotx
  • Versions: 25
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 6.4%
Average: 6.6%
Dependent repos count: 6.9%
Last synced: 4 months ago
conda-forge.org: matplotx
  • Versions: 12
  • Dependent Packages: 2
  • Dependent Repositories: 1
Rankings
Stargazers count: 16.1%
Dependent packages count: 19.6%
Average: 22.7%
Dependent repos count: 24.4%
Forks count: 30.8%
Last synced: 4 months ago

Dependencies

.github/workflows/tests.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
  • codecov/codecov-action v1 composite
  • nschloe/action-cached-lfs-checkout v1 composite
  • pre-commit/action v3.0.0 composite