circrna

circRNA quantification, differential expression analysis and miRNA target prediction of RNA-Seq data

https://github.com/nf-core/circrna

Science Score: 57.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 21 DOI reference(s) in README
  • Academic publication links
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (7.6%) to scientific vocabulary

Keywords

bioinformatics circrna circrna-pipeline circrna-prediction circular-rna genomics mirna mirna-targets nextflow nf-core ngs pipeline rna-seq workflow

Keywords from Contributors

metagenomics smrna-seq small-rna workflows pipelines microbiome pacbio qiime2 rrna taxonomic-classification
Last synced: 4 months ago · JSON representation ·

Repository

circRNA quantification, differential expression analysis and miRNA target prediction of RNA-Seq data

Basic Info
  • Host: GitHub
  • Owner: nf-core
  • License: mit
  • Language: Nextflow
  • Default Branch: dev
  • Homepage: https://nf-co.re/circrna
  • Size: 90.4 MB
Statistics
  • Stars: 57
  • Watchers: 128
  • Forks: 32
  • Open Issues: 20
  • Releases: 0
Topics
bioinformatics circrna circrna-pipeline circrna-prediction circular-rna genomics mirna mirna-targets nextflow nf-core ngs pipeline rna-seq workflow
Created almost 5 years ago · Last pushed 4 months ago
Metadata Files
Readme Changelog Contributing License Code of conduct Citation

README.md

nf-core/circrna

GitHub Actions CI Status GitHub Actions Linting StatusAWS CICite with Zenodo nf-test

GitHub Actions CI Status GitHub Actions Linting StatusAWS CICite with Zenodo

Nextflow run with conda run with docker run with singularity Launch on Seqera Platform

Get help on SlackFollow on TwitterFollow on MastodonWatch on YouTube

Introduction

nf-core/circrna is a bioinformatics pipeline to analyse total RNA sequencing data obtained from organisms with a reference genome and annotation. It takes a samplesheet and FASTQ files as input, performs quality control (QC), trimming, back-splice junction (BSJ) detection, annotation, quantification and miRNA target prediction of circular RNAs.

The pipeline is still under development, but the BSJ detection and quantification steps are already implemented and functional. The following features are planned to be implemented soon:

  • Isoform-level circRNA detection and quantification
  • circRNA-miRNA interaction analysis using SPONGE and spongEffects
  • Improved downstream analyses

If you want to contribute, feel free to create an issue or pull request on the GitHub repository or join the Slack channel.

Pipeline summary

Metro Map

  • Raw read QC (FastQC)
  • Adapter trimming (Trim Galore!)
  • BSJ detection
  • circRNA annotation
    • Based on a GTF file
    • Based on database files (if provided)
  • Extract circRNA sequences and build circular transcriptome
  • Merge circular transcriptome with linear transcriptome derived from provided GTF
  • Quantification of combined circular and linear transcriptome
  • miRNA binding affinity analysis (only if the mature parameter is provided)
    • Normalizes miRNA expression (only if the mirna_expression parameter is provided)
    • Binding site prediction
    • miRanda
    • TargetScan
    • Perform majority vote on binding sites
    • Compute correlations between miRNA and transcript expression levels (only if the mirna_expression parameter is provided)
  • Statistical tests (only if the phenotype parameter is provided)
  • MultiQC report MultiQC

Usage

[!NOTE] If you are new to Nextflow and nf-core, please refer to this page on how to set-up Nextflow.Make sure to test your setup with -profile test before running the workflow on actual data.

First, prepare a samplesheet with your input data that looks as follows:

csv title="samplesheet.csv" sample,fastq_1,fastq_2 CONTROL,CONTROL_R1.fastq.gz,CONTROL_R2.fastq.gz TREATMENT,TREATMENT_R1.fastq.gz,TREATMENT_R2.fastq.gz

Each row represents a fastq file (single-end) or a pair of fastq files (paired end).

Now, you can run the pipeline using:

bash nextflow run nf-core/circrna \ -profile <docker/singularity/.../institute> \ --input samplesheet.csv \ --outdir <OUTDIR>

[!WARNING] Please provide pipeline parameters via the CLI or Nextflow -params-file option. Custom config files including those provided by the -c Nextflow option can be used to provide any configuration except for parameters; see docs.

For more details and further functionality, please refer to the usage documentation and the parameter documentation.

Pipeline output

To see the results of an example test run with a full size dataset refer to the results tab on the nf-core website pipeline page. For more details about the output files and reports, please refer to the output documentation.

bash nextflow run nf-core/circrna \ -profile <docker/singularity/.../institute> \ --input samplesheet.csv \ --outdir <OUTDIR>

[!WARNING] Please provide pipeline parameters via the CLI or Nextflow -params-file option. Custom config files including those provided by the -c Nextflow option can be used to provide any configuration except for parameters; see docs.

For more details and further functionality, please refer to the usage documentation and the parameter documentation.

Pipeline output

To see the results of an example test run with a full size dataset refer to the results tab on the nf-core website pipeline page. For more details about the output files and reports, please refer to the output documentation.

Credits

nf-core/circrna was originally written by Barry Digby. It was later refactored, extended and improved by Nico Trummer.

We thank the following people for their extensive assistance in the development of this pipeline (in alphabetical order):

Acknowledgements

SFI

Contributions and Support

If you would like to contribute to this pipeline, please see the contributing guidelines.

For further information or help, don't hesitate to get in touch on the Slack #circrna channel (you can join with this invite).

Citations

nf-core/circrna: a portable workflow for the quantification, miRNA target prediction and differential expression analysis of circular RNAs.

Barry Digby, Stephen P. Finn, & Pilib Ó Broin

BMC Bioinformatics 24, 27 (2023) doi: 10.1186/s12859-022-05125-8

An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md file.

You can cite the nf-core publication as follows:

The nf-core framework for community-curated bioinformatics pipelines.

Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.

Nat Biotechnol. 2020 Feb 13. doi: 10.1038/s41587-020-0439-x.

Owner

  • Name: nf-core
  • Login: nf-core
  • Kind: organization
  • Email: core@nf-co.re

A community effort to collect a curated set of analysis pipelines built using Nextflow.

Citation (CITATIONS.md)

# nf-core/circrna: Citations

## [nf-core](https://pubmed.ncbi.nlm.nih.gov/32055031/)

> Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020 Mar;38(3):276-278. doi: 10.1038/s41587-020-0439-x. PubMed PMID: 32055031.

## [Nextflow](https://pubmed.ncbi.nlm.nih.gov/28398311/)

> Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017 Apr 11;35(4):316-319. doi: 10.1038/nbt.3820. PubMed PMID: 28398311.

## Pipeline tools

- [BEDTools](https://pubmed.ncbi.nlm.nih.gov/20110278/)

  > Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010 Mar 15;26(6):841-2. doi: 10.1093/bioinformatics/btq033. Epub 2010 Jan 28. PubMed PMID: 20110278; PubMed Central PMCID: PMC2832824.

- [Bowtie](https://doi.org/10.1186/gb-2009-10-3-r25)

  > Langmead, B., Trapnell, C., Pop, M. et al., 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25. doi: 10.1186/gb-2009-10-3-r25

- [Bowtie2](https:/dx.doi.org/10.1038/nmeth.1923)

  > Langmead, B. and Salzberg, S. L. 2012 Fast gapped-read alignment with Bowtie 2. Nature methods, 9(4), p. 357–359. doi: 10.1038/nmeth.1923.

- [BWA](https://www.ncbi.nlm.nih.gov/pubmed/19451168/)

  > Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009 Jul 15;25(14):1754-60. doi: 10.1093/bioinformatics/btp324. Epub 2009 May 18. PubMed PMID: 19451168; PubMed Central PMCID: PMC2705234.

- [CIRCexplorer2](https://doi.org/10.1101/gr.202895.115)

  > Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, Yang L. (2016). Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016 Sep;26(9):1277-87.

- [circRNA finder](https://doi.org/10.1016/j.celrep.2014.10.062)

  > Westholm, J.O., Lai, E.C., et al. (2016). Genome-wide Analysis of Drosophila Circular RNAs Reveals Their Structural and Sequence Properties and Age-Dependent Neural Accumulation Westholm et al. Cell Reports.

- [CIRIquant](https://doi.org/10.1038/s41467-019-13840-9)

  > Zhang, J., Chen, S., Yang, J. et al. (2020). Accurate quantification of circular RNAs identifies extensive circular isoform switching events. Nat Commun 11, 90.

- [DCC](https://doi.org/10.1093/bioinformatics/btv656)

  > Jun Cheng, Franziska Metge, Christoph Dieterich, (2016). Specific identification and quantification of circular RNAs from sequencing data, Bioinformatics, 32(7), 1094–1096.

- [FastQC](https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

> Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online].

- [find circ](https://doi.org/10.1038/nature11928)

  > Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M., Loewer, A., Ziebold, U., Landthaler, M., Kocks, C., le Noble, F., & Rajewsky, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495(7441), 333–338.

- [GATK](https://pubmed.ncbi.nlm.nih.gov/20644199/)

  > McKenna A, Hanna M, Banks E, et al.: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010 Sep;20(9):1297-303. doi: 10.1101/gr.107524.110. Epub 2010 Jul 19. PubMed PMID: 20644199; PubMed Central PMCID: PMC2928508.

- [HISAT2](https://pubmed.ncbi.nlm.nih.gov/31375807/)

  > Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019 Aug;37(8):907-915. doi: 10.1038/s41587-019-0201-4. Epub 2019 Aug 2. PubMed PMID: 31375807.

- [MapSplice2](https://doi.org/10.1093/nar/gkq622)

  > Wang, K., Liu J., et al. (2010) MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery, Nucleic Acids Research, 38(18), 178.

- [miRanda](https://doi.org/10.1186/gb-2003-5-1-r1)

  > Enright, A.J., John, B., Gaul, U. et al. (2003). MicroRNA targets in Drosophila. Genome Biol 5, R1.

- [find circ](https://doi.org/10.1038/nature11928)

  > Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M., Loewer, A., Ziebold, U., Landthaler, M., Kocks, C., le Noble, F., & Rajewsky, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495(7441), 333–338.

- [GATK](https://pubmed.ncbi.nlm.nih.gov/20644199/)

  > McKenna A, Hanna M, Banks E, et al.: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010 Sep;20(9):1297-303. doi: 10.1101/gr.107524.110. Epub 2010 Jul 19. PubMed PMID: 20644199; PubMed Central PMCID: PMC2928508.

- [HISAT2](https://pubmed.ncbi.nlm.nih.gov/31375807/)

  > Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019 Aug;37(8):907-915. doi: 10.1038/s41587-019-0201-4. Epub 2019 Aug 2. PubMed PMID: 31375807.

- [MapSplice2](https://doi.org/10.1093/nar/gkq622)

  > Wang, K., Liu J., et al. (2010) MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery, Nucleic Acids Research, 38(18), 178.

- [miRanda](https://doi.org/10.1186/gb-2003-5-1-r1)

  > Enright, A.J., John, B., Gaul, U. et al. (2003). MicroRNA targets in Drosophila. Genome Biol 5, R1.

- [MultiQC](https://pubmed.ncbi.nlm.nih.gov/27312411/)

> Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016 Oct 1;32(19):3047-8. doi: 10.1093/bioinformatics/btw354. Epub 2016 Jun 16. PubMed PMID: 27312411; PubMed Central PMCID: PMC5039924.

- [R](https://www.R-project.org/)

  > R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  - [biomaRt](https://doi.org/10.1038/nprot.2009.97)

    > Durinck S, Spellman PT, Birney E, Huber W. (2009). Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 4(8):1184-91.

  - [circlize](https://doi.org/10.1093/bioinformatics/btu393)

    > Zuguang Gu, Lei Gu, Roland Eils, Matthias Schlesner, Benedikt Brors (2014). circlize implements and enhances circular visualization in R , Bioinformatics, 30,(19) 2811–2812.

  - [DESeq2](https://doi.org/10.1186/s13059-014-0550-8)

    > Love, M.I., Huber, W. & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.

  - [EnhancedVolcano](https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html)

    > Blighe K, Rana S, Lewis M (2020). EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling.

  - [ggplot2](https://ggplot2.tidyverse.org)

    > Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4.

  - [ggpubr](https://rpkgs.datanovia.com/ggpubr/)

    > Kassambara A. (2020). ggpubr: 'ggplot2' Based Publication Ready Plots.

  - [ihw](https://doi.org/10.1038/nmeth.3885)

    > Ignatiadis, N., Klaus, B., Zaugg, J. et al. (2016). Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nat Methods 13, 577–580.

  - [PCAtools](https://bioconductor.org/packages/release/bioc/html/PCAtools.html)

    > Blighe K, Lun A (2020). PCAtools: PCAtools: Everything Principal Components Analysis.

  - [pheatmap](https://cran.r-project.org/package=pheatmap)

    > Kolde, R. (2019) Pretty Heatmaps.

  - [pvclust](https://doi.org/10.1093/bioinformatics/btl117)

    > Suzuki R., Shimodaira H., (2006). Pvclust: an R package for assessing the uncertainty in hierarchical clustering, Bioinformatics, 22(12), 1540–1542.

- [SAMtools](https://pubmed.ncbi.nlm.nih.gov/19505943/)

  > Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009 Aug 15;25(16):2078-9. doi: 10.1093/bioinformatics/btp352. Epub 2009 Jun 8. PubMed PMID: 19505943; PubMed Central PMCID: PMC2723002.

- [Segemehl](https://doi.org/10.1371/journal.pcbi.1000502)

  > Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J, Stadler PF, Hackermueller J: "Fast mapping of short sequences with mismatches, insertions and deletions using index structures", PLoS Comput Biol (2009) vol. 5 (9) pp. e1000502.

- [STAR](https://pubmed.ncbi.nlm.nih.gov/23104886/)

  > Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner Bioinformatics. 2013 Jan 1;29(1):15-21. doi: 10.1093/bioinformatics/bts635. Epub 2012 Oct 25. PubMed PMID: 23104886; PubMed Central PMCID: PMC3530905.

- [StringTie2](https://pubmed.ncbi.nlm.nih.gov/31842956/)

  > Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2 Genome Biol. 2019 Dec 16;20(1):278. doi: 10.1186/s13059-019-1910-1. PubMed PMID: 31842956; PubMed Central PMCID: PMC6912988.

- [TargetScan](https://doi.org/10.7554/elife.05005)

  > Agarwal V, Bell GW, Nam JW, Bartel DP. (2015). Predicting effective microRNA target sites in mammalian mRNAs. Elife, 4:e05005.

- [ViennaRNA](https://doi.org/10.1186/1748-7188-6-26)

  > Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C. et al. (2011). ViennaRNA Package 2.0. Algorithms Mol Biol 6, 26.

## Test data References

> Cao D. An autoregulation loop in fust-1 for circular RNA regulation in Caenorhabditis elegans. Genetics. 2021 Nov 5;219(3):iyab145. doi: 10.1093/genetics/iyab145. PMID: 34740247; PMCID: PMC8570788.

## Software packaging/containerisation tools

- [Anaconda](https://anaconda.com)

  > Anaconda Software Distribution. Computer software. Vers. 2-2.4.0. Anaconda, Nov. 2016. Web.

- [Bioconda](https://pubmed.ncbi.nlm.nih.gov/29967506/)

  > Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J; Bioconda Team. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018 Jul;15(7):475-476. doi: 10.1038/s41592-018-0046-7. PubMed PMID: 29967506.

- [BioContainers](https://pubmed.ncbi.nlm.nih.gov/28379341/)

  > da Veiga Leprevost F, Grüning B, Aflitos SA, Röst HL, Uszkoreit J, Barsnes H, Vaudel M, Moreno P, Gatto L, Weber J, Bai M, Jimenez RC, Sachsenberg T, Pfeuffer J, Alvarez RV, Griss J, Nesvizhskii AI, Perez-Riverol Y. BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics. 2017 Aug 15;33(16):2580-2582. doi: 10.1093/bioinformatics/btx192. PubMed PMID: 28379341; PubMed Central PMCID: PMC5870671.

- [Docker](https://dl.acm.org/doi/10.5555/2600239.2600241)

  > Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux Journal, 2014(239), 2. doi: 10.5555/2600239.2600241.

- [Singularity](https://pubmed.ncbi.nlm.nih.gov/28494014/)

  > Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLoS One. 2017 May 11;12(5):e0177459. doi: 10.1371/journal.pone.0177459. eCollection 2017. PubMed PMID: 28494014; PubMed Central PMCID: PMC5426675.

GitHub Events

Total
  • Issues event: 24
  • Watch event: 11
  • Delete event: 20
  • Member event: 1
  • Issue comment event: 53
  • Push event: 95
  • Pull request event: 43
  • Pull request review event: 2
  • Fork event: 9
  • Create event: 23
Last Year
  • Issues event: 24
  • Watch event: 11
  • Delete event: 20
  • Member event: 1
  • Issue comment event: 53
  • Push event: 95
  • Pull request event: 43
  • Pull request review event: 2
  • Fork event: 9
  • Create event: 23

Committers

Last synced: about 2 years ago

All Time
  • Total Commits: 1,020
  • Total Committers: 6
  • Avg Commits per committer: 170.0
  • Development Distribution Score (DDS): 0.025
Past Year
  • Commits: 208
  • Committers: 4
  • Avg Commits per committer: 52.0
  • Development Distribution Score (DDS): 0.058
Top Committers
Name Email Commits
Barry digby b****7@g****m 994
nf-core-bot c****e@n****e 18
Alexander Peltzer a****r@g****m 5
Ben Whittle 7****w@u****m 1
MaxUlysse m****a@g****m 1
kevinmenden k****n@t****e 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 70
  • Total pull requests: 124
  • Average time to close issues: 4 months
  • Average time to close pull requests: about 1 month
  • Total issue authors: 25
  • Total pull request authors: 16
  • Average comments per issue: 1.89
  • Average comments per pull request: 1.31
  • Merged pull requests: 76
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 15
  • Pull requests: 16
  • Average time to close issues: 18 days
  • Average time to close pull requests: 7 days
  • Issue authors: 6
  • Pull request authors: 3
  • Average comments per issue: 0.67
  • Average comments per pull request: 0.75
  • Merged pull requests: 10
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • nictru (25)
  • BarryDigby (7)
  • ZabalaAitor (4)
  • csittz (3)
  • luciazifcakova (2)
  • guillaumecharbonnier (2)
  • bkbx (2)
  • pnolabs (2)
  • yshen16 (2)
  • mazzalab (2)
  • MariekeVromman (2)
  • ianyfchang (2)
  • bioShaun (2)
  • xfk274280 (1)
  • Fabian-Boehm (1)
Pull Request Authors
  • nictru (44)
  • BarryDigby (34)
  • nf-core-bot (29)
  • MariekeVromman (5)
  • jfy133 (2)
  • xfk274280 (2)
  • WalshKieran (2)
  • Dibassow (1)
  • chaesee1 (1)
  • bj-w (1)
  • Fabian-Boehm (1)
  • mweyrich28 (1)
  • MrNiro (1)
  • drpatelh (1)
  • maxulysse (1)
Top Labels
Issue Labels
bug (34) enhancement (20) feature-request (7) first-timers-only (5) WIP (1) DSL2 (1) documentation (1)
Pull Request Labels
bug (6) enhancement (5) documentation (1) feature-request (1)

Dependencies

.github/workflows/awsfulltest.yml actions
  • actions/upload-artifact v3 composite
  • nf-core/tower-action v3 composite
.github/workflows/awstest.yml actions
  • actions/upload-artifact v3 composite
  • nf-core/tower-action v3 composite
.github/workflows/branch.yml actions
  • mshick/add-pr-comment v1 composite
.github/workflows/ci.yml actions
  • actions/checkout v3 composite
  • nf-core/setup-nextflow v1 composite
.github/workflows/fix-linting.yml actions
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
.github/workflows/linting.yml actions
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
  • actions/setup-python v4 composite
  • actions/upload-artifact v3 composite
  • mshick/add-pr-comment v1 composite
  • nf-core/setup-nextflow v1 composite
  • psf/black stable composite
.github/workflows/linting_comment.yml actions
  • dawidd6/action-download-artifact v2 composite
  • marocchino/sticky-pull-request-comment v2 composite
modules/nf-core/bowtie/align/meta.yml cpan
modules/nf-core/bowtie/build/meta.yml cpan
modules/nf-core/bowtie2/align/meta.yml cpan
modules/nf-core/bowtie2/build/meta.yml cpan
modules/nf-core/bwa/index/meta.yml cpan
modules/nf-core/cat/fastq/meta.yml cpan
modules/nf-core/circexplorer2/annotate/meta.yml cpan
modules/nf-core/circexplorer2/parse/meta.yml cpan
modules/nf-core/custom/dumpsoftwareversions/meta.yml cpan
modules/nf-core/fastqc/meta.yml cpan
modules/nf-core/hisat2/align/meta.yml cpan
modules/nf-core/hisat2/build/meta.yml cpan
modules/nf-core/hisat2/extractsplicesites/meta.yml cpan
modules/nf-core/miranda/meta.yml cpan
modules/nf-core/multiqc/meta.yml cpan
modules/nf-core/samtools/index/meta.yml cpan
modules/nf-core/samtools/sort/meta.yml cpan
modules/nf-core/samtools/view/meta.yml cpan
modules/nf-core/segemehl/align/meta.yml cpan
modules/nf-core/segemehl/index/meta.yml cpan
modules/nf-core/star/align/meta.yml cpan
modules/nf-core/star/genomegenerate/meta.yml cpan
modules/nf-core/stringtie/stringtie/meta.yml cpan
modules/nf-core/trimgalore/meta.yml cpan
pyproject.toml pypi