fedless
Source code for the paper "FedLess: Secure and Scalable Federated Learning Using Serverless Computing" (IEEE BigData 2021)
Science Score: 23.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
○codemeta.json file
-
○.zenodo.json file
-
✓DOI references
Found 1 DOI reference(s) in README -
✓Academic publication links
Links to: arxiv.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (8.9%) to scientific vocabulary
Keywords
Repository
Source code for the paper "FedLess: Secure and Scalable Federated Learning Using Serverless Computing" (IEEE BigData 2021)
Basic Info
Statistics
- Stars: 14
- Watchers: 2
- Forks: 2
- Open Issues: 0
- Releases: 0
Topics
Metadata Files
README.md
FedLess
This is the source code for the paper "FedLess: Secure and Scalable Federated Learning Using Serverless Computing", presented at IEEE BigData 2021. The preprint can be found on arXiv.
Installation
Requires Python >= 3.7
```bash
(Optional) Create and activate virtual environment
virtualenv .venv source .venv/bin/activate
Install development dependencies
pip install ".[dev]"
Run unit and integration tests
pytest && pytest -m integ ```
Citation
If you use this software, please cite it as below:
@inproceedings{grafberger2021fedless,
author = {Grafberger, Andreas and Chadha, Mohak and Jindal, Anshul and Gu, Jianfeng and Gerndt, Michael},
booktitle = {2021 IEEE International Conference on Big Data (Big Data)},
title = {FedLess: Secure and Scalable Federated Learning Using Serverless Computing},
year = {2021},
volume = {},
number = {},
pages = {164-173},
doi = {10.1109/BigData52589.2021.9672067}
}
Owner
- Name: Andreas Grafberger
- Login: andreas-grafberger
- Kind: user
- Repositories: 18
- Profile: https://github.com/andreas-grafberger
GitHub Events
Total
Last Year
Dependencies
- fedless main
- fedless main
- fedless main
- fedless main
- PyYAML *
- azure-functions *
- backoff *
- boto3 *
- click *
- h5py *
- matplotlib *
- numpy ==1.19.5
- pandas *
- pydantic >=1.8.2
- pymongo *
- python-jose *
- requests ==2.26
- tensorflow >=2.5.1
- twine ==3.3.0
- SciencePlots * test
- black ==20.8b1 test
- httpretty * test
- jupyterlab * test
- memory_profiler * test
- mongomock * test
- pymongo-inmemory * test
- pytest ==6.2.2 test
- pytest-asyncio * test
- pytest-cov ==2.11.1 test
- requests-mock ==1.8.0 test