Science Score: 49.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 5 DOI reference(s) in README -
✓Academic publication links
Links to: zenodo.org -
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (11.2%) to scientific vocabulary
Keywords
Repository
Fast and explainable clustering in Python
Basic Info
- Host: GitHub
- Owner: nla-group
- License: mit
- Language: Python
- Default Branch: master
- Homepage: https://classix.readthedocs.io/en/latest/
- Size: 297 MB
Statistics
- Stars: 116
- Watchers: 3
- Forks: 12
- Open Issues: 1
- Releases: 25
Topics
Metadata Files
README-ch.md
CLASSIX:
CLASSIX
-
-
- Cython
CLASSIX CLustering by Aggregation with Sorting-based Indexing (X for explainability)
PIP Conda CLASSIX
| PyPI | conda-forge |
| :---: |:---: |
| |
|
| NumPy<=1.26.4:
pip install classixclustering
NumPy>2: pip install classixclustering --no-cache-dir| conda install -c conda-forge classixclustering |
pip install classixclustering --no-cache-dir
____ | ____
:---:|:---:
|
CLASSIX
```python import classix
data, labels = classix.loadData('Covid3MC')
from sklearn.datasets import make_blobs
data, labels = makeblobs(nsamples=1000, centers=3, nfeatures=2, randomstate=0)
CLASSIX
clx = classix.CLASSIX(radius=0.2, minPts=500, verbose=0) clx.fit(data) print(clx.labels_) # ``` predict() clx.predict(data.iloc[:1000])
CLASSIX
-
radiusminPts
- Cython
1.
CLASSIX 2D
```python import classix import numpy as np import matplotlib.pyplot as plt
from sklearn.datasets import makemoons data, _ = makemoons(n_samples=1000, noise=0.05)
clx = classix.CLASSIX(radius=0.15, minPts=10, verbose=0) clx.fit(data)
plt.scatter(data[:, 0], data[:, 1], c=clx.labels_, cmap='viridis', s=5) plt.show() ```
2.
CLASSIX
```python from sklearn.datasets import makeblobs data, labels = makeblobs(nsamples=5000, centers=5, nfeatures=20, random_state=0)
clx = classix.CLASSIX(radius=10, minPts=100, verbose=1) clx.fit(data) print(clx.labels_) ```
3.
CLASSIX
```python from sklearn.datasets import makeblobs data, _ = makeblobs(nsamples=500, centers=3, nfeatures=2, random_state=0)
np.random.seed(0) outliers = np.random.uniform(low=-10, high=10, size=(50, 2)) datawithoutliers = np.vstack([data, outliers])
clx = classix.CLASSIX(radius=0.5, minPts=10, verbose=1) clx.fit(datawithoutliers)
(-1 )
print(clx.labels_) ```
,
git clone https://github.com/nla-group/classix.git
cd classix
python -m venv env
source env/bin/activate # Windows: env\Scripts\activate
pip install .
pytest unittests.py
GitHub Issues
stefan.guettel@manchester.ac.uk
CLASSIX
@article{CG24,
title = {Fast and explainable clustering based on sorting},
author = {Xinye Chen and Stefan Gttel},
journal = {Pattern Recognition},
volume = {150},
pages = {110298},
year = {2024},
doi = {https://doi.org/10.1016/j.patcog.2024.110298}
}
Owner
- Name: nla-group
- Login: nla-group
- Kind: organization
- Repositories: 8
- Profile: https://github.com/nla-group
GitHub Events
Total
- Release event: 1
- Watch event: 14
- Push event: 137
- Fork event: 3
- Create event: 3
Last Year
- Release event: 1
- Watch event: 14
- Push event: 137
- Fork event: 3
- Create event: 3
Committers
Last synced: almost 3 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| Null | 4****e@u****m | 523 |
| chenxinye | c****t@y****m | 77 |
| Stefan Güttel | g****l@u****m | 17 |
Issues and Pull Requests
Last synced: about 2 years ago
All Time
- Total issues: 13
- Total pull requests: 7
- Average time to close issues: about 2 months
- Average time to close pull requests: about 8 hours
- Total issue authors: 7
- Total pull request authors: 2
- Average comments per issue: 2.23
- Average comments per pull request: 0.43
- Merged pull requests: 6
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 3
- Pull requests: 5
- Average time to close issues: about 1 month
- Average time to close pull requests: about 12 hours
- Issue authors: 1
- Pull request authors: 2
- Average comments per issue: 1.0
- Average comments per pull request: 0.6
- Merged pull requests: 5
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- guettel (3)
- mikecroucher (2)
- Emmanuel-Mekonnen (1)
- chenxinye (1)
- MotorZ (1)
- joshdunnlime (1)
- Schwaggot (1)
Pull Request Authors
- chenxinye (6)
- kianmeng (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 2
-
Total downloads:
- pypi 113 last-month
-
Total dependent packages: 0
(may contain duplicates) -
Total dependent repositories: 1
(may contain duplicates) - Total versions: 132
- Total maintainers: 1
pypi.org: classixclustering
Fast and explainable clustering based on sorting
- Homepage: https://github.com/nla-group/CLASSIX.git
- Documentation: https://classixclustering.readthedocs.io/
- License: MIT License
-
Latest release: 1.2.9
published about 1 year ago
Rankings
Maintainers (1)
conda-forge.org: classixclustering
- Homepage: https://github.com/nla-group/classix
- License: MIT
-
Latest release: 0.7.7
published over 3 years ago
Rankings
Dependencies
- classixclustering >=0.5.8
- matplotlib *
- numpy *
- pandas *
- requests *
- scipy ==1.7.3
- matplotlib *
- numpy >=1.3.0
- pandas *
- requests *
- scipy >=0.7.0
- cython *
- matplotlib *
- numpy >=1.3.0
- pandas *
- requests *
- scipy >=0.7.0
- actions/checkout master composite
- actions/setup-python master composite
- codecov/codecov-action v2 composite
- actions/checkout v1 composite
- actions/setup-python v1 composite
- xnla/ubuntu py build