scikit-matter

A collection of scikit-learn compatible utilities that implement methods born out of the materials science and chemistry communities

https://github.com/scikit-learn-contrib/scikit-matter

Science Score: 67.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 5 DOI reference(s) in README
  • Academic publication links
  • Committers with academic emails
    1 of 17 committers (5.9%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (15.2%) to scientific vocabulary

Keywords

machine-learning material-science python scikit-learn

Keywords from Contributors

materials-science molecule molecular-dynamics transformation cryptocurrencies generic diffusion meshes distributed embedded
Last synced: 6 months ago · JSON representation ·

Repository

A collection of scikit-learn compatible utilities that implement methods born out of the materials science and chemistry communities

Basic Info
Statistics
  • Stars: 86
  • Watchers: 16
  • Forks: 22
  • Open Issues: 17
  • Releases: 10
Topics
machine-learning material-science python scikit-learn
Created over 5 years ago · Last pushed 6 months ago
Metadata Files
Readme Changelog License Code of conduct Citation

README.rst

scikit-matter
=============

|tests| |codecov| |pypi| |conda| |docs-stable| |docs-latest| |doi|

A collection of ``scikit-learn`` compatible utilities that implement methods born out of
the materials science and chemistry communities.

For details, tutorials, and examples, please have a look at our documentation_. We also
provide a `latest documentation`_ from the current unreleased development version.

.. _`documentation`: https://scikit-matter.readthedocs.io/en/v0.3.1/
.. _`latest documentation`: https://scikit-matter.readthedocs.io/en/latest

.. marker-installation

Installation
------------
You can install *scikit-matter* either via pip using

.. code-block:: bash

    pip install skmatter

or conda

.. code-block:: bash

    conda install -c conda-forge skmatter

You can then ``import skmatter`` and use scikit-matter in your projects!

.. marker-ci-tests

Tests
-----
We are testing our code for Python 3.10 and 3.13 on the latest versions of Ubuntu,
macOS and Windows.

.. marker-issues

Having problems or ideas?
-------------------------
Having a problem with scikit-matter? Please let us know by `submitting an issue
`_.

Submit new features or bug fixes through a `pull request
`_.

.. marker-contributing

Call for Contributions
----------------------
We always welcome new contributors. If you want to help us take a look at our
`contribution guidelines`_ and afterwards you may start with an open issue marked as
`good first issue`_.

Writing code is not the only way to contribute to the project. You can also:

* review `pull requests`_
* help us stay on top of new and old `issues`_
* develop `examples and tutorials`_
* maintain and `improve our documentation`_
* contribute `new datasets`_

.. _`contribution guidelines`: https://scikit-matter.readthedocs.io/en/latest/contributing.html
.. _`good first issue`: https://github.com/scikit-learn-contrib/scikit-matter/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
.. _`pull requests`: https://github.com/scikit-learn-contrib/scikit-matter/pulls
.. _`issues`: https://github.com/scikit-learn-contrib/scikit-matter/issues
.. _`improve our documentation`: https://scikit-matter.readthedocs.io/en/latest/contributing.html#contributing-to-the-documentation
.. _`examples and tutorials`: https://scikit-matter.readthedocs.io/en/latest/contributing.html#contributing-new-examples
.. _`new datasets`: https://scikit-matter.readthedocs.io/en/latest/contributing.html#contributing-datasets

.. marker-citing

Citing scikit-matter
--------------------
If you use *scikit-matter* for your work, please cite:

Goscinski A, Principe VP, Fraux G et al. scikit-matter :
A Suite of Generalisable Machine Learning Methods Born out of Chemistry
and Materials Science. Open Res Europe 2023, 3:81.
`10.12688/openreseurope.15789.2`_

.. _`10.12688/openreseurope.15789.2`: https://doi.org/10.12688/openreseurope.15789.2

.. marker-contributors

Contributors
------------
Thanks goes to all people that make scikit-matter possible:

.. image:: https://contrib.rocks/image?repo=scikit-learn-contrib/scikit-matter
   :target: https://github.com/scikit-learn-contrib/scikit-matter/graphs/contributors

.. |tests| image:: https://github.com/scikit-learn-contrib/scikit-matter/workflows/Tests/badge.svg
   :alt: Github Actions Tests Job Status
   :target: action_

.. |codecov| image:: https://codecov.io/gh/scikit-learn-contrib/scikit-matter/branch/main/graph/badge.svg?token=UZJPJG34SM
   :alt: Code coverage
   :target: https://codecov.io/gh/scikit-learn-contrib/scikit-matter/

.. |docs-stable| image:: https://img.shields.io/badge/📚_Documentation-stable-sucess
   :alt: Documentation of stable released version
   :target: `documentation`_

.. |docs-latest| image:: https://img.shields.io/badge/📒_Documentation-latest-yellow.svg
   :alt: Documentation of latest unreleased version
   :target: `latest documentation`_

.. |pypi| image:: https://img.shields.io/pypi/v/skmatter.svg
   :alt: Latest PYPI version
   :target: https://pypi.org/project/skmatter

.. |conda| image:: https://anaconda.org/conda-forge/skmatter/badges/version.svg
   :alt: Latest conda version
   :target: https://anaconda.org/conda-forge/skmatter

.. |doi| image:: https://img.shields.io/badge/DOI-10.12688-blue
   :alt: ORE Paper
   :target: `10.12688/openreseurope.15789.2`_

.. _`action`: https://github.com/scikit-learn-contrib/scikit-matter/actions?query=branch%3Amain

Owner

  • Name: scikit-learn-contrib
  • Login: scikit-learn-contrib
  • Kind: organization

scikit-learn compatible projects

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use scikit-matter for your work, please read and cite it as below."
title: >-
  scikit-matter : a suite of generalisable machine learning methods born out of chemistry and materials science [version 2; peer review: 3 approved, 1 approved with reservations]
type: journalArticle
issue: 81
volume: 3
authors: 
  - family-names: Goscinski
    given-names: Alexander
  - family-names: Principe
    given-names: Victor P.
  - family-names: Fraux
    given-names: Guillaume
  - family-names: Kliavinek
    given-names: Sergei
  - family-names: Helfrecht
    given-names: Benjamin A.
  - family-names: Loche
    given-names: Philip
  - family-names: Ceriotti
    given-names: Michele
  - family-names: Cersonsky
    given-names: Rose K.
date-published: 2023
identifiers: 
  - type: doi
    value: 10.12688/openreseurope.15789.2

GitHub Events

Total
  • Create event: 20
  • Release event: 2
  • Issues event: 11
  • Watch event: 10
  • Delete event: 13
  • Member event: 3
  • Issue comment event: 18
  • Push event: 85
  • Pull request review event: 85
  • Pull request review comment event: 79
  • Pull request event: 45
  • Fork event: 4
Last Year
  • Create event: 20
  • Release event: 2
  • Issues event: 11
  • Watch event: 10
  • Delete event: 13
  • Member event: 3
  • Issue comment event: 18
  • Push event: 85
  • Pull request review event: 85
  • Pull request review comment event: 79
  • Pull request event: 45
  • Fork event: 4

Committers

Last synced: 9 months ago

All Time
  • Total Commits: 330
  • Total Committers: 17
  • Avg Commits per committer: 19.412
  • Development Distribution Score (DDS): 0.552
Past Year
  • Commits: 24
  • Committers: 6
  • Avg Commits per committer: 4.0
  • Development Distribution Score (DDS): 0.458
Top Committers
Name Email Commits
rosecers r****y@g****m 148
alexgo a****i@p****e 65
Philip Loche p****e@p****e 39
Luthaf l****f@l****r 30
victorprincipe v****6@g****m 11
Michele Ceriotti c****m 9
Sergei Kliavinek k****s@g****m 7
rosecers 6
bhelfrecht b****t 4
Qianjun Xu 9****X 2
arthur-lin1027 3****7 2
SanggyuChong s****5@g****m 2
Christian Jorgensen 1****n 1
Saswat s****n@g****m 1
dependabot[bot] 4****] 1
serfg s****v@g****m 1
AtharvaRai07 a****7@g****m 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 65
  • Total pull requests: 179
  • Average time to close issues: 5 months
  • Average time to close pull requests: 21 days
  • Total issue authors: 11
  • Total pull request authors: 17
  • Average comments per issue: 1.49
  • Average comments per pull request: 1.77
  • Merged pull requests: 142
  • Bot issues: 0
  • Bot pull requests: 6
Past Year
  • Issues: 6
  • Pull requests: 35
  • Average time to close issues: about 2 months
  • Average time to close pull requests: 25 days
  • Issue authors: 4
  • Pull request authors: 6
  • Average comments per issue: 0.0
  • Average comments per pull request: 0.34
  • Merged pull requests: 19
  • Bot issues: 0
  • Bot pull requests: 4
Top Authors
Issue Authors
  • agoscinski (25)
  • rosecers (16)
  • Luthaf (10)
  • PicoCentauri (6)
  • bhelfrecht (2)
  • PKGuo (1)
  • ceriottm (1)
  • DavideTisi (1)
  • rvasav26 (1)
  • hurricane642 (1)
  • arthur-lin1027 (1)
Pull Request Authors
  • rosecers (52)
  • PicoCentauri (33)
  • agoscinski (25)
  • rvasav26 (13)
  • Luthaf (10)
  • hurricane642 (8)
  • bhelfrecht (7)
  • cajchristian (7)
  • dependabot[bot] (6)
  • victorprincipe (6)
  • GardevoirX (5)
  • ceriottm (2)
  • arthur-lin1027 (1)
  • jwa7 (1)
  • SanggyuChong (1)
Top Labels
Issue Labels
enhancement (12) documentation (8) good first issue (8) low-priority (6) bug (6) help wanted (5) question (2) dependencies (2) wontfix (1)
Pull Request Labels
dependencies (7) documentation (2) bug (2) enhancement (1) github_actions (1)

Dependencies

docs/requirements.txt pypi
  • ipykernel *
  • matplotlib *
  • nbconvert *
  • nbsphinx *
  • numpy *
  • scikit-learn >=0.24.0
  • sphinx >=3.3
  • sphinx_rtd_theme *
  • tqdm *
  • traitlets >=5.0
.github/workflows/docs.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
.github/workflows/lint.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
.github/workflows/tests.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
  • codecov/codecov-action v1 composite
.github/workflows/build.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/documentation-links.yml actions
  • readthedocs/actions/preview v1 composite
pyproject.toml pypi
  • scikit-learn >=1.1.0