h2-opt-st-interp-num

Numerical examples of interpolatory necessary H2-optimality conditions for structured linear systems

https://github.com/pmli/h2-opt-st-interp-num

Science Score: 54.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (8.5%) to scientific vocabulary

Keywords

research-data
Last synced: 6 months ago · JSON representation ·

Repository

Numerical examples of interpolatory necessary H2-optimality conditions for structured linear systems

Basic Info
  • Host: GitHub
  • Owner: pmli
  • License: mit
  • Language: Python
  • Default Branch: main
  • Homepage:
  • Size: 9.77 KB
Statistics
  • Stars: 0
  • Watchers: 1
  • Forks: 0
  • Open Issues: 0
  • Releases: 1
Topics
research-data
Created over 1 year ago · Last pushed over 1 year ago
Metadata Files
Readme License Citation

README.md

Numerical Examples for Structured $\mathcal{H}_2$-optimality Conditions

This repository contains code for numerical experiments reported in

P. Mlinarić, P. Benner, S. Gugercin, Interpolatory $\mathcal{H}_2$-optimality Conditions for Structured Linear Time-invariant Systems, arXiv preprint, 2023

Installation

The code is implemented in the Python programming language (tested using Python 3.10.12).

The necessary packages are listed in requirements.txt. They can be installed in a virtual environment by, e.g.,

bash python3 -m venv .venv source .venv/bin/activate pip install -U pip pip install -r requirements.txt

Running the Experiments

The experiments are given as three Python scripts (second-order.py, port-Hamiltonian.py, time-delay.py). Note that second-order.py and port-Hamiltonian.py may complete in a few minutes, but time-delay.py may take 10h.

The scripts can be opened as Jupyter notebooks via jupytext.

Author

Petar Mlinarić:

  • affiliation: Virginia Tech
  • email: mlinaric@vt.edu
  • ORCiD: 0000-0002-9437-7698

License

The code is published under the MIT license. See LICENSE.

Owner

  • Name: Petar Mlinarić
  • Login: pmli
  • Kind: user
  • Location: Blacksburg, VA, USA
  • Company: Virginia Tech

Applied math postdoc at Virginia Tech

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Mlinarić"
  given-names: "Petar"
  orcid: "https://orcid.org/0000-0002-9437-7698"
title: "Numerical Examples for Structured {$\\mathcal{H}_2$}-optimality Conditions"
version: v1
date-released: 2024-06-24
preferred-citation:
  type: unpublished
  authors:
  - family-names: "Mlinarić"
    given-names: "Petar"
    orcid: "https://orcid.org/0000-0002-9437-7698"
  - family-names: "Benner"
    given-names: "Peter"
    orcid: "https://orcid.org/0000-0003-3362-4103"
  - family-names: "Gugercin"
    given-names: "Serkan"
    orcid: "https://orcid.org/0000-0003-4564-5999"
  doi: "10.48550/arXiv.2310.10618"
  note: "arXiv preprint 2310.10618"
  title: "Interpolatory {$\\mathcal{H}_2$}-optimality Conditions for Structured Linear Time-invariant Systems"
  year: 2023

GitHub Events

Total
Last Year

Dependencies

requirements.txt pypi
  • anyio ==4.3.0
  • argon2-cffi ==23.1.0
  • argon2-cffi-bindings ==21.2.0
  • arrow ==1.3.0
  • asttokens ==2.4.1
  • async-lru ==2.0.4
  • attrs ==23.2.0
  • babel ==2.14.0
  • beautifulsoup4 ==4.12.3
  • bleach ==6.1.0
  • certifi ==2024.2.2
  • cffi ==1.16.0
  • charset-normalizer ==3.3.2
  • click ==8.1.7
  • comm ==0.2.2
  • contourpy ==1.2.1
  • cycler ==0.12.1
  • debugpy ==1.8.1
  • decorator ==5.1.1
  • defusedxml ==0.7.1
  • diskcache ==5.6.3
  • exceptiongroup ==1.2.0
  • executing ==2.0.1
  • fastjsonschema ==2.19.1
  • fonttools ==4.50.0
  • fqdn ==1.5.1
  • h11 ==0.14.0
  • httpcore ==1.0.5
  • httpx ==0.27.0
  • idna ==3.6
  • ipykernel ==6.29.4
  • ipython ==8.23.0
  • isoduration ==20.11.0
  • jedi ==0.19.1
  • jinja2 ==3.1.3
  • json5 ==0.9.24
  • jsonpointer ==2.4
  • jsonschema ==4.21.1
  • jsonschema-specifications ==2023.12.1
  • jupyter-client ==8.6.1
  • jupyter-core ==5.7.2
  • jupyter-events ==0.10.0
  • jupyter-lsp ==2.2.4
  • jupyter-server ==2.13.0
  • jupyter-server-terminals ==0.5.3
  • jupyterlab ==4.1.5
  • jupyterlab-pygments ==0.3.0
  • jupyterlab-server ==2.25.4
  • kiwisolver ==1.4.5
  • markdown-it-py ==3.0.0
  • markupsafe ==2.1.5
  • matplotlib ==3.8.3
  • matplotlib-inline ==0.1.6
  • mdurl ==0.1.2
  • mistune ==3.0.2
  • nbclient ==0.10.0
  • nbconvert ==7.16.3
  • nbformat ==5.10.3
  • nest-asyncio ==1.6.0
  • notebook ==7.1.2
  • notebook-shim ==0.2.4
  • numpy ==1.26.4
  • overrides ==7.7.0
  • packaging ==24.0
  • pandocfilters ==1.5.1
  • parso ==0.8.3
  • pexpect ==4.9.0
  • pillow ==10.3.0
  • platformdirs ==4.2.0
  • prometheus-client ==0.20.0
  • prompt-toolkit ==3.0.43
  • psutil ==5.9.8
  • ptyprocess ==0.7.0
  • pure-eval ==0.2.2
  • pycparser ==2.22
  • pygments ==2.17.2
  • pymor ==2023.1.0
  • pyparsing ==3.1.2
  • python-dateutil ==2.9.0.post0
  • python-json-logger ==2.0.7
  • pyyaml ==6.0.1
  • pyzmq ==25.1.2
  • qtpy ==2.4.1
  • referencing ==0.34.0
  • requests ==2.31.0
  • rfc3339-validator ==0.1.4
  • rfc3986-validator ==0.1.1
  • rich ==13.7.1
  • rpds-py ==0.18.0
  • scipy ==1.13.0
  • send2trash ==1.8.2
  • shellingham ==1.5.4
  • six ==1.16.0
  • sniffio ==1.3.1
  • soupsieve ==2.5
  • stack-data ==0.6.3
  • terminado ==0.18.1
  • tinycss2 ==1.2.1
  • tomli ==2.0.1
  • tornado ==6.4
  • traitlets ==5.14.2
  • typer ==0.12.0
  • typer-cli ==0.12.0
  • typer-slim ==0.12.0
  • types-python-dateutil ==2.9.0.20240316
  • typing-extensions ==4.10.0
  • uri-template ==1.3.0
  • urllib3 ==2.2.1
  • wcwidth ==0.2.13
  • webcolors ==1.13
  • webencodings ==0.5.1
  • websocket-client ==1.7.0